File: geometry.cpp

package info (click to toggle)
fenics-dolfinx 1%3A0.9.0-11
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 5,376 kB
  • sloc: cpp: 33,701; python: 22,338; makefile: 230; sh: 171; xml: 55
file content (263 lines) | stat: -rw-r--r-- 10,721 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
// Copyright (C) 2017 Chris N. Richardson and Garth N. Wells
//
// This file is part of DOLFINx (https://www.fenicsproject.org)
//
// SPDX-License-Identifier:    LGPL-3.0-or-later

#include "array.h"
#include "caster_mpi.h"
#include <dolfinx/common/utils.h>
#include <dolfinx/geometry/BoundingBoxTree.h>
#include <dolfinx/geometry/gjk.h>
#include <dolfinx/geometry/utils.h>
#include <dolfinx/mesh/Mesh.h>
#include <memory>
#include <nanobind/nanobind.h>
#include <nanobind/ndarray.h>
#include <nanobind/stl/array.h>
#include <nanobind/stl/tuple.h>
#include <nanobind/stl/vector.h>
#include <span>

namespace nb = nanobind;

namespace
{
template <typename T>
void declare_bbtree(nb::module_& m, std::string type)
{
  // dolfinx::geometry::BoundingBoxTree
  std::string pyclass_name = "BoundingBoxTree_" + type;
  nb::class_<dolfinx::geometry::BoundingBoxTree<T>>(m, pyclass_name.c_str())
      .def(
          "__init__",
          [](dolfinx::geometry::BoundingBoxTree<T>* bbt,
             const dolfinx::mesh::Mesh<T>& mesh, int dim,
             nb::ndarray<const std::int32_t, nb::ndim<1>, nb::c_contig>
                 entities,
             double padding)
          {
            new (bbt) dolfinx::geometry::BoundingBoxTree<T>(
                mesh, dim,
                std::span<const std::int32_t>(entities.data(), entities.size()),
                padding);
          },
          nb::arg("mesh"), nb::arg("dim"), nb::arg("entities"),
          nb::arg("padding") = 0.0)
      .def_prop_ro("num_bboxes",
                   &dolfinx::geometry::BoundingBoxTree<T>::num_bboxes)
      .def(
          "get_bbox",
          [](const dolfinx::geometry::BoundingBoxTree<T>& self,
             const std::size_t i)
          {
            std::array<T, 6> bbox = self.get_bbox(i);
            return dolfinx_wrappers::as_nbarray_copy(bbox, {2, 3});
          },
          nb::arg("i"))
      .def("__repr__", &dolfinx::geometry::BoundingBoxTree<T>::str)
      .def(
          "create_global_tree",
          [](const dolfinx::geometry::BoundingBoxTree<T>& self,
             const dolfinx_wrappers::MPICommWrapper comm)
          { return self.create_global_tree(comm.get()); },
          nb::arg("comm"));

  m.def(
      "compute_collisions_points",
      [](const dolfinx::geometry::BoundingBoxTree<T>& tree,
         nb::ndarray<const T, nb::shape<3>, nb::c_contig> points)
      {
        return dolfinx::geometry::compute_collisions<T>(
            tree, std::span(points.data(), 3));
      },
      nb::arg("tree"), nb::arg("points"));
  m.def(
      "compute_collisions_points",
      [](const dolfinx::geometry::BoundingBoxTree<T>& tree,
         nb::ndarray<const T, nb::shape<-1, 3>, nb::c_contig> points)
      {
        return dolfinx::geometry::compute_collisions<T>(
            tree, std::span(points.data(), points.size()));
      },
      nb::arg("tree"), nb::arg("points"));
  m.def(
      "compute_collisions_trees",
      [](const dolfinx::geometry::BoundingBoxTree<T>& treeA,
         const dolfinx::geometry::BoundingBoxTree<T>& treeB)
      {
        std::vector coll
            = dolfinx::geometry::compute_collisions<T>(treeA, treeB);
        return dolfinx_wrappers::as_nbarray(std::move(coll),
                                            {coll.size() / 2, 2});
      },
      nb::arg("tree0"), nb::arg("tree1"));
  m.def(
      "compute_closest_entity",
      [](const dolfinx::geometry::BoundingBoxTree<T>& tree,
         const dolfinx::geometry::BoundingBoxTree<T>& midpoint_tree,
         const dolfinx::mesh::Mesh<T>& mesh,
         nb::ndarray<const T, nb::shape<3>, nb::c_contig> points)
      {
        return dolfinx_wrappers::as_nbarray(
            dolfinx::geometry::compute_closest_entity<T>(
                tree, midpoint_tree, mesh,
                std::span(points.data(), points.size())));
      },
      nb::arg("tree"), nb::arg("midpoint_tree"), nb::arg("mesh"),
      nb::arg("points"));
  m.def(
      "compute_closest_entity",
      [](const dolfinx::geometry::BoundingBoxTree<T>& tree,
         const dolfinx::geometry::BoundingBoxTree<T>& midpoint_tree,
         const dolfinx::mesh::Mesh<T>& mesh,
         nb::ndarray<const T, nb::shape<-1, 3>, nb::c_contig> points)
      {
        return dolfinx_wrappers::as_nbarray(
            dolfinx::geometry::compute_closest_entity<T>(
                tree, midpoint_tree, mesh,
                std::span(points.data(), points.size())));
      },
      nb::arg("tree"), nb::arg("midpoint_tree"), nb::arg("mesh"),
      nb::arg("points"));
  m.def(
      "create_midpoint_tree",
      [](const dolfinx::mesh::Mesh<T>& mesh, int tdim,
         nb::ndarray<const std::int32_t, nb::ndim<1>, nb::c_contig> entities)
      {
        return dolfinx::geometry::create_midpoint_tree(
            mesh, tdim,
            std::span<const std::int32_t>(entities.data(), entities.size()));
      },
      nb::arg("mesh"), nb::arg("tdim"), nb::arg("entities"));
  m.def(
      "compute_colliding_cells",
      [](const dolfinx::mesh::Mesh<T>& mesh,
         const dolfinx::graph::AdjacencyList<int>& candidate_cells,
         nb::ndarray<const T, nb::shape<3>, nb::c_contig> points)
      {
        return dolfinx::geometry::compute_colliding_cells<T>(
            mesh, candidate_cells, std::span(points.data(), points.size()));
      },
      nb::arg("mesh"), nb::arg("candidate_cells"), nb::arg("points"));
  m.def(
      "compute_colliding_cells",
      [](const dolfinx::mesh::Mesh<T>& mesh,
         const dolfinx::graph::AdjacencyList<int>& candidate_cells,
         nb::ndarray<const T, nb::shape<-1, 3>, nb::c_contig> points)
      {
        return dolfinx::geometry::compute_colliding_cells<T>(
            mesh, candidate_cells, std::span(points.data(), points.size()));
      },
      nb::arg("mesh"), nb::arg("candidate_cells"), nb::arg("points"));

  std::string gjk_name = "compute_distance_gjk_" + type;
  m.def(
      gjk_name.c_str(),
      [](nb::ndarray<const T, nb::c_contig> p,
         nb::ndarray<const T, nb::c_contig> q)
      {
        std::size_t p_s0 = p.ndim() == 1 ? 1 : p.shape(0);
        std::size_t q_s0 = q.ndim() == 1 ? 1 : q.shape(0);
        std::span<const T> _p(p.data(), 3 * p_s0), _q(q.data(), 3 * q_s0);
        // Use double when T==float, and double_extended when T==double
        using U = std::conditional<
            std::is_same_v<T, float>, double,
            boost::multiprecision::cpp_bin_float_double_extended>::type;

        std::array<T, 3> d
            = dolfinx::geometry::compute_distance_gjk<T, U>(_p, _q);
        return dolfinx_wrappers::as_nbarray_copy(d, {d.size()});
      },
      nb::arg("p"), nb::arg("q"));

  m.def(
      "squared_distance",
      [](const dolfinx::mesh::Mesh<T>& mesh, int dim,
         nb::ndarray<const std::int32_t, nb::ndim<1>, nb::c_contig> indices,
         nb::ndarray<const T, nb::c_contig> points)
      {
        const std::size_t p_s0 = points.ndim() == 1 ? 1 : points.shape(0);
        std::span<const T> _p(points.data(), 3 * p_s0);
        return dolfinx_wrappers::as_nbarray(
            dolfinx::geometry::squared_distance<T>(
                mesh, dim, std::span(indices.data(), indices.size()), _p));
      },
      nb::arg("mesh"), nb::arg("dim"), nb::arg("indices"), nb::arg("points"));
  m.def("determine_point_ownership",
        [](const dolfinx::mesh::Mesh<T>& mesh,
           nb::ndarray<const T, nb::c_contig> points, const T padding)
        {
          const std::size_t p_s0 = points.ndim() == 1 ? 1 : points.shape(0);
          std::span<const T> _p(points.data(), 3 * p_s0);
          return dolfinx::geometry::determine_point_ownership<T>(mesh, _p,
                                                                 padding);
        });

  std::string pod_pyclass_name = "PointOwnershipData_" + type;
  nb::class_<dolfinx::geometry::PointOwnershipData<T>>(m,
                                                       pod_pyclass_name.c_str())
      .def(
          "__init__",
          [](dolfinx::geometry::PointOwnershipData<T>* self,
             nb::ndarray<const std::int32_t, nb::ndim<1>, nb::c_contig>
                 src_owner,
             nb::ndarray<const std::int32_t, nb::ndim<1>, nb::c_contig>
                 dest_owners,
             nb::ndarray<const T, nb::ndim<1>, nb::c_contig> dest_points,
             nb::ndarray<const std::int32_t, nb::ndim<1>, nb::c_contig>
                 dest_cells)
          {
            new (self) dolfinx::geometry::PointOwnershipData<T>{
                .src_owner = std::vector(src_owner.data(),
                                         src_owner.data() + src_owner.size()),
                .dest_owners
                = std::vector(dest_owners.data(),
                              dest_owners.data() + dest_owners.size()),
                .dest_points
                = std::vector(dest_points.data(),
                              dest_points.data() + dest_points.size()),
                .dest_cells = std::vector(
                    dest_cells.data(), dest_cells.data() + dest_cells.size())};
          },
          nb::arg("src_owner"), nb::arg("dest_owners"), nb::arg("dest_points"),
          nb::arg("dest_cells"))
      .def_prop_ro("src_owner",
                   [](const dolfinx::geometry::PointOwnershipData<T>& self)
                   {
                     return nb::ndarray<const int, nb::numpy>(
                         self.src_owner.data(), {self.src_owner.size()},
                         nb::handle());
                   })
      .def_prop_ro("dest_owners",
                   [](const dolfinx::geometry::PointOwnershipData<T>& self)
                   {
                     return nb::ndarray<const int, nb::numpy>(
                         self.dest_owners.data(), {self.dest_owners.size()},
                         nb::handle());
                   })
      .def_prop_ro("dest_points",
                   [](const dolfinx::geometry::PointOwnershipData<T>& self)
                   {
                     return nb::ndarray<const T, nb::numpy>(
                         self.dest_points.data(),
                         {self.dest_points.size() / 3, 3}, nb::handle());
                   })
      .def_prop_ro("dest_cells",
                   [](const dolfinx::geometry::PointOwnershipData<T>& self)
                   {
                     return nb::ndarray<const std::int32_t, nb::numpy>(
                         self.dest_cells.data(), {self.dest_cells.size()},
                         nb::handle());
                   });
}
} // namespace

namespace dolfinx_wrappers
{
void geometry(nb::module_& m)
{
  declare_bbtree<float>(m, "float32");
  declare_bbtree<double>(m, "float64");
}
} // namespace dolfinx_wrappers