1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
|
# Copyright (C) 2022-2024 Joseph P. Dean, Jørgen S. Dokken
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier: LGPL-3.0-or-later
# TODO Test replacing mesh with submesh for existing assembler tests
from mpi4py import MPI
import numpy as np
import pytest
import ufl
from dolfinx import default_scalar_type, fem, la
from dolfinx.fem import compute_integration_domains
from dolfinx.mesh import (
CellType,
GhostMode,
compute_incident_entities,
create_box,
create_rectangle,
create_submesh,
create_unit_cube,
create_unit_interval,
create_unit_square,
entities_to_geometry,
exterior_facet_indices,
locate_entities,
locate_entities_boundary,
meshtags,
)
def assemble(mesh, space, k):
V = fem.functionspace(mesh, (space, k))
u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
dx = ufl.Measure("dx", domain=mesh)
ds = ufl.Measure("ds", domain=mesh)
c = fem.Constant(mesh, default_scalar_type(0.75))
a = fem.form(ufl.inner(c * u, v) * (dx + ds))
facet_dim = mesh.topology.dim - 1
facets = locate_entities_boundary(mesh, facet_dim, lambda x: np.isclose(x[0], 1))
dofs = fem.locate_dofs_topological(V, facet_dim, facets)
bc_func = fem.Function(V)
bc_func.interpolate(lambda x: np.sin(x[0]))
bc = fem.dirichletbc(bc_func, dofs)
A = fem.assemble_matrix(a, bcs=[bc])
A.scatter_reverse()
# TODO Test assembly with fem.Function
x = ufl.SpatialCoordinate(mesh)
f = 1.5 + x[0]
L = fem.form(ufl.inner(c * f, v) * (dx + ds))
b = fem.assemble_vector(L)
fem.apply_lifting(b.array, [a], bcs=[[bc]])
b.scatter_reverse(la.InsertMode.add)
bc.set(b.array)
s = mesh.comm.allreduce(
fem.assemble_scalar(fem.form(ufl.inner(c * f, f) * (dx + ds))), op=MPI.SUM
)
return A, b, s
@pytest.mark.parametrize("d", [2, 3])
@pytest.mark.parametrize("n", [2, 6])
@pytest.mark.parametrize("k", [1, 4])
@pytest.mark.parametrize("space", ["Lagrange", "Discontinuous Lagrange"])
@pytest.mark.parametrize("ghost_mode", [GhostMode.none, GhostMode.shared_facet])
def test_submesh_cell_assembly(d, n, k, space, ghost_mode):
"""Check that assembling a form over a unit square gives the same
result as assembling over half of a 2x1 rectangle with the same
triangulation."""
if d == 2:
mesh_0 = create_unit_square(MPI.COMM_WORLD, n, n, ghost_mode=ghost_mode)
mesh_1 = create_rectangle(
MPI.COMM_WORLD, ((0.0, 0.0), (2.0, 1.0)), (2 * n, n), ghost_mode=ghost_mode
)
else:
mesh_0 = create_unit_cube(MPI.COMM_WORLD, n, n, n, ghost_mode=ghost_mode)
mesh_1 = create_box(
MPI.COMM_WORLD, ((0.0, 0.0, 0.0), (2.0, 1.0, 1.0)), (2 * n, n, n), ghost_mode=ghost_mode
)
A_mesh_0, b_mesh_0, s_mesh_0 = assemble(mesh_0, space, k)
edim = mesh_1.topology.dim
entities = locate_entities(mesh_1, edim, lambda x: x[0] <= 1.0)
submesh = create_submesh(mesh_1, edim, entities)[0]
A_submesh, b_submesh, s_submesh = assemble(submesh, space, k)
assert A_mesh_0.squared_norm() == pytest.approx(
A_submesh.squared_norm(), rel=1.0e-4, abs=1.0e-4
)
assert la.norm(b_mesh_0) == pytest.approx(la.norm(b_submesh), rel=1.0e-4)
assert np.isclose(s_mesh_0, s_submesh)
@pytest.mark.parametrize("n", [2, 6])
@pytest.mark.parametrize("k", [1, 4])
@pytest.mark.parametrize("space", ["Lagrange", "Discontinuous Lagrange"])
@pytest.mark.parametrize("ghost_mode", [GhostMode.none, GhostMode.shared_facet])
def test_submesh_facet_assembly(n, k, space, ghost_mode):
"""Test that assembling a form over the face of a unit cube gives
the same result as assembling it over a unit square."""
cube_mesh = create_unit_cube(MPI.COMM_WORLD, n, n, n, ghost_mode=ghost_mode)
edim = cube_mesh.topology.dim - 1
entities = locate_entities_boundary(cube_mesh, edim, lambda x: np.isclose(x[2], 0.0))
submesh = create_submesh(cube_mesh, edim, entities)[0]
A_submesh, b_submesh, s_submesh = assemble(submesh, space, k)
square_mesh = create_unit_square(MPI.COMM_WORLD, n, n, ghost_mode=ghost_mode)
A_square_mesh, b_square_mesh, s_square_mesh = assemble(square_mesh, space, k)
assert A_submesh.squared_norm() == pytest.approx(
A_square_mesh.squared_norm(), rel=1.0e-5, abs=1.0e-5
)
assert la.norm(b_submesh) == pytest.approx(la.norm(b_square_mesh))
assert np.isclose(s_submesh, s_square_mesh)
def create_measure(msh, integral_type):
"""Helper function to create an integration measure of type `integral_type`
over domain `msh`"""
def create_meshtags(msh, dim, entities):
values = np.full_like(entities, 1, dtype=np.intc)
perm = np.argsort(entities)
return meshtags(msh, dim, entities[perm], values[perm])
tdim = msh.topology.dim
fdim = tdim - 1
if integral_type == "dx":
cells = locate_entities(msh, msh.topology.dim, lambda x: x[0] <= 0.5)
mt = create_meshtags(msh, tdim, cells)
elif integral_type == "ds":
facets = locate_entities_boundary(
msh, msh.topology.dim - 1, lambda x: np.isclose(x[1], 0.0) & (x[0] <= 0.5)
)
mt = create_meshtags(msh, fdim, facets)
else:
assert integral_type == "dS"
def interior_marker(x):
dist = 1 / 12
return (x[0] > dist) & (x[0] < 1 - dist) & (x[1] > dist) & (x[1] < 1 - dist)
facets = locate_entities(msh, fdim, interior_marker)
mt = create_meshtags(msh, fdim, facets)
return ufl.Measure(integral_type, domain=msh, subdomain_data=mt)(1)
def a_ufl(u, v, f, g, measure):
"Helper function to create a UFL bilinear form. The form depends on the integral type"
if measure.integral_type() == "cell" or measure.integral_type() == "exterior_facet":
return ufl.inner(f * g * u, v) * measure
else:
assert measure.integral_type() == "interior_facet"
return ufl.inner(f("-") * g("-") * (u("+") + u("-")), v("+") + v("-")) * measure
def L_ufl(v, f, g, measure):
"Helper function to create a UFL linear form. The form depends on the integral type"
if measure.integral_type() == "cell" or measure.integral_type() == "exterior_facet":
return ufl.inner(f * g, v) * measure
else:
assert measure.integral_type() == "interior_facet"
return ufl.inner(f("+") * g("+"), v("+") + v("-")) * measure
def M_ufl(f, g, measure):
if measure.integral_type() == "cell" or measure.integral_type() == "exterior_facet":
return f * g * measure
else:
assert measure.integral_type() == "interior_facet"
return (f("+") + f("-")) * (g("+") + g("-")) * measure
@pytest.mark.parametrize("n", [4, 6])
@pytest.mark.parametrize("k", [1, 3])
@pytest.mark.parametrize("space", ["Lagrange", "Discontinuous Lagrange"])
@pytest.mark.parametrize("integral_type", ["dx", "ds", "dS"])
def test_mixed_dom_codim_0(n, k, space, integral_type):
"""Test assembling forms where the trial and test functions
are defined over different meshes"""
# Create a mesh
msh = create_rectangle(
MPI.COMM_WORLD, ((0.0, 0.0), (2.0, 1.0)), (2 * n, n), ghost_mode=GhostMode.shared_facet
)
# Create a submesh of the left half of the mesh
tdim = msh.topology.dim
cells = locate_entities(msh, tdim, lambda x: x[0] <= 1.0)
smsh, smsh_to_msh = create_submesh(msh, tdim, cells)[:2]
# Define function spaces over the mesh and submesh
V = fem.functionspace(msh, (space, k))
W = fem.functionspace(msh, (space, k))
Q = fem.functionspace(smsh, (space, k))
# Trial and test functions on the mesh
u = ufl.TrialFunction(V)
w = ufl.TestFunction(W)
# Test function on the submesh
q = ufl.TestFunction(Q)
# Coefficients
def coeff_expr(x):
return np.sin(np.pi * x[0])
# Coefficient defined over the mesh
f = fem.Function(V)
f.interpolate(coeff_expr)
# Coefficient defined over the submesh
g = fem.Function(Q)
g.interpolate(coeff_expr)
# Create an integration measure defined over msh
measure_msh = create_measure(msh, integral_type)
# Create a Dirichlet boundary condition
u_bc = fem.Function(V)
u_bc.interpolate(lambda x: np.sin(np.pi * x[1]))
dirichlet_facets = locate_entities_boundary(
msh, msh.topology.dim - 1, lambda x: np.isclose(x[0], 0.0)
)
dirichlet_dofs = fem.locate_dofs_topological(V, msh.topology.dim - 1, dirichlet_facets)
bc = fem.dirichletbc(u_bc, dirichlet_dofs)
# Single-domain assembly over msh as a reference to check against
a = fem.form(a_ufl(u, w, f, f, measure_msh))
A = fem.assemble_matrix(a, bcs=[bc])
A.scatter_reverse()
L = fem.form(L_ufl(w, f, f, measure_msh))
b = fem.assemble_vector(L)
fem.apply_lifting(b.array, [a], bcs=[[bc]])
b.scatter_reverse(la.InsertMode.add)
M = fem.form(M_ufl(f, f, measure_msh))
c = msh.comm.allreduce(fem.assemble_scalar(M), op=MPI.SUM)
# Assemble a mixed-domain form using msh as integration domain.
# Entity maps must map cells in msh (the integration domain mesh,
# defined by the integration measure) to cells in smsh.
cell_imap = msh.topology.index_map(tdim)
num_cells = cell_imap.size_local + cell_imap.num_ghosts
msh_to_smsh = np.full(num_cells, -1)
msh_to_smsh[smsh_to_msh] = np.arange(len(smsh_to_msh))
entity_maps = {smsh: np.array(msh_to_smsh, dtype=np.int32)}
a0 = fem.form(a_ufl(u, q, f, g, measure_msh), entity_maps=entity_maps)
A0 = fem.assemble_matrix(a0, bcs=[bc])
A0.scatter_reverse()
assert np.isclose(A0.squared_norm(), A.squared_norm())
L0 = fem.form(L_ufl(q, f, g, measure_msh), entity_maps=entity_maps)
b0 = fem.assemble_vector(L0)
fem.apply_lifting(b0.array, [a0], bcs=[[bc]])
b0.scatter_reverse(la.InsertMode.add)
assert np.isclose(la.norm(b0), la.norm(b))
M0 = fem.form(M_ufl(f, g, measure_msh), entity_maps=entity_maps)
c0 = msh.comm.allreduce(fem.assemble_scalar(M0), op=MPI.SUM)
assert np.isclose(c0, c)
# Now assemble a mixed-domain form taking smsh to be the integration
# domain.
# Create the measure (this time defined over the submesh)
measure_smsh = create_measure(smsh, integral_type)
# Entity maps must map cells in smsh (the integration domain mesh) to
# cells in msh
entity_maps = {msh: np.array(smsh_to_msh, dtype=np.int32)}
a1 = fem.form(a_ufl(u, q, f, g, measure_smsh), entity_maps=entity_maps)
A1 = fem.assemble_matrix(a1, bcs=[bc])
A1.scatter_reverse()
assert np.isclose(A1.squared_norm(), A.squared_norm())
L1 = fem.form(L_ufl(q, f, g, measure_smsh), entity_maps=entity_maps)
b1 = fem.assemble_vector(L1)
fem.apply_lifting(b1.array, [a1], bcs=[[bc]])
b1.scatter_reverse(la.InsertMode.add)
assert np.isclose(la.norm(b1), la.norm(b))
M1 = fem.form(M_ufl(f, g, measure_smsh), entity_maps=entity_maps)
c1 = msh.comm.allreduce(fem.assemble_scalar(M1), op=MPI.SUM)
assert np.isclose(c1, c)
@pytest.mark.parametrize("n", [4, 6])
@pytest.mark.parametrize("k", [1, 3])
def test_mixed_dom_codim_1(n, k):
"""Test assembling forms where the trial functions, test functions
and coefficients are defined over different meshes of different topological
dimension."""
msh = create_unit_square(MPI.COMM_WORLD, n, n)
# Create a submesh of the boundary
tdim = msh.topology.dim
msh.topology.create_connectivity(tdim - 1, tdim)
boundary_facets = exterior_facet_indices(msh.topology)
smsh, smsh_to_msh = create_submesh(msh, tdim - 1, boundary_facets)[:2]
# Define function spaces over the mesh and submesh
V = fem.functionspace(msh, ("Lagrange", k))
W = fem.functionspace(msh, ("Lagrange", k))
Vbar = fem.functionspace(smsh, ("Lagrange", k))
# Create a Dirichlet boundary condition
u_bc = fem.Function(V)
u_bc.interpolate(lambda x: np.sin(np.pi * x[1]))
dirichlet_facets = locate_entities_boundary(
msh, msh.topology.dim - 1, lambda x: np.isclose(x[0], 0.0)
)
dirichlet_dofs = fem.locate_dofs_topological(V, msh.topology.dim - 1, dirichlet_facets)
bc = fem.dirichletbc(u_bc, dirichlet_dofs)
# Trial and test functions
u = ufl.TrialFunction(V)
v = ufl.TestFunction(W)
vbar = ufl.TestFunction(Vbar)
# Coefficients
def coeff_expr(x):
return np.sin(np.pi * x[0])
# Coefficient defined over the mesh
f = fem.Function(V)
f.interpolate(coeff_expr)
# Coefficient defined over the submesh
g = fem.Function(Vbar)
g.interpolate(coeff_expr)
# Create the integration measure. Mixed-dimensional forms use the
# higher-dimensional domain as the integration domain
ds = ufl.Measure("ds", domain=msh)
# Create reference forms to compare to
a = fem.form(a_ufl(u, v, f, f, ds))
A = fem.assemble_matrix(a, bcs=[bc])
A.scatter_reverse()
L = fem.form(L_ufl(v, f, f, ds))
b = fem.assemble_vector(L)
fem.apply_lifting(b.array, [a], bcs=[[bc]])
b.scatter_reverse(la.InsertMode.add)
M = fem.form(M_ufl(f, f, ds))
c = msh.comm.allreduce(fem.assemble_scalar(M), op=MPI.SUM)
# Since msh is the integration domain, we must pass entity maps taking
# facets in msh to cells in smsh. This is simply the inverse of smsh_to_msh.
facet_imap = msh.topology.index_map(tdim - 1)
num_facets = facet_imap.size_local + facet_imap.num_ghosts
msh_to_smsh = np.full(num_facets, -1)
msh_to_smsh[smsh_to_msh] = np.arange(len(smsh_to_msh))
entity_maps = {smsh: msh_to_smsh}
# Create forms and compare
a1 = fem.form(a_ufl(u, vbar, f, g, ds), entity_maps=entity_maps)
A1 = fem.assemble_matrix(a1, bcs=[bc])
A1.scatter_reverse()
assert np.isclose(A.squared_norm(), A1.squared_norm())
L1 = fem.form(L_ufl(vbar, f, g, ds), entity_maps=entity_maps)
b1 = fem.assemble_vector(L1)
fem.apply_lifting(b1.array, [a1], bcs=[[bc]])
b1.scatter_reverse(la.InsertMode.add)
assert np.isclose(la.norm(b), la.norm(b1))
M1 = fem.form(M_ufl(f, g, ds), entity_maps=entity_maps)
c1 = msh.comm.allreduce(fem.assemble_scalar(M1), op=MPI.SUM)
assert np.isclose(c, c1)
# TODO Test random mesh and interior facets
def test_disjoint_submeshes():
"""Test assembly with multiple disjoint submeshes in same variational form"""
N = 10
tol = 1e-14
mesh = create_unit_interval(MPI.COMM_WORLD, N, ghost_mode=GhostMode.shared_facet)
tdim = mesh.topology.dim
dx = 1.0 / N
center_tag = 1
left_tag = 2
right_tag = 3
left_interface_tag = 4
right_interface_tag = 5
def left(x):
return x[0] < N // 3 * dx + tol
def right(x):
return x[0] > 2 * N // 3 * dx - tol
cell_map = mesh.topology.index_map(tdim)
num_cells_local = cell_map.size_local + cell_map.num_ghosts
values = np.full(num_cells_local, center_tag, dtype=np.int32)
values[locate_entities(mesh, tdim, left)] = left_tag
values[locate_entities(mesh, tdim, right)] = right_tag
cell_tag = meshtags(mesh, tdim, np.arange(num_cells_local, dtype=np.int32), values)
left_facets = compute_incident_entities(mesh.topology, cell_tag.find(left_tag), tdim, tdim - 1)
center_facets = compute_incident_entities(
mesh.topology, cell_tag.find(center_tag), tdim, tdim - 1
)
right_facets = compute_incident_entities(
mesh.topology, cell_tag.find(right_tag), tdim, tdim - 1
)
# Create parent facet tag where left interface is tagged with 4, right with 5
left_interface = np.intersect1d(left_facets, center_facets)
right_interface = np.intersect1d(right_facets, center_facets)
facet_map = mesh.topology.index_map(tdim)
num_facet_local = facet_map.size_local + cell_map.num_ghosts
facet_values = np.full(num_facet_local, 1, dtype=np.int32)
facet_values[left_interface] = left_interface_tag
facet_values[right_interface] = right_interface_tag
facet_tag = meshtags(mesh, tdim - 1, np.arange(num_facet_local, dtype=np.int32), facet_values)
# Create facet integrals on each interface
left_mesh, left_to_parent, _, _ = create_submesh(mesh, tdim, cell_tag.find(left_tag))
right_mesh, right_to_parent, _, _ = create_submesh(mesh, tdim, cell_tag.find(right_tag))
# One sided interface integral uses only "+" restriction. Sort integration entities such that
# this is always satisfied
def compute_mapped_interior_facet_data(mesh, facet_tag, value, parent_to_sub_map):
"""Compute integration data for interior facet integrals, where the positive restriction is
always taken on the side that has a cell in the sub mesh.
Args:
mesh: Parent mesh
facet_tag: Meshtags object for facets
value: Value of the facets to extract
parent_to_sub_map: Mapping from parent mesh to sub mesh
Returns:
Integration data for interior facets
"""
mesh.topology.create_connectivity(mesh.topology.dim - 1, mesh.topology.dim)
integration_data = compute_integration_domains(
fem.IntegralType.interior_facet, mesh.topology, facet_tag.find(value), facet_tag.dim
)
mapped_cell_0 = parent_to_sub_map[integration_data[0::4]]
mapped_cell_1 = parent_to_sub_map[integration_data[2::4]]
switch = mapped_cell_1 > mapped_cell_0
# Order restriction on one side
ordered_integration_data = integration_data.reshape(-1, 4).copy()
if True in switch:
ordered_integration_data[switch, [0, 1, 2, 3]] = ordered_integration_data[
switch, [2, 3, 0, 1]
]
return (value, ordered_integration_data.reshape(-1))
parent_to_left = np.full(num_cells_local, -1, dtype=np.int32)
parent_to_right = np.full(num_cells_local, -1, dtype=np.int32)
parent_to_left[left_to_parent] = np.arange(len(left_to_parent))
parent_to_right[right_to_parent] = np.arange(len(right_to_parent))
integral_data = [
compute_mapped_interior_facet_data(mesh, facet_tag, left_interface_tag, parent_to_left),
compute_mapped_interior_facet_data(mesh, facet_tag, right_interface_tag, parent_to_right),
]
dS = ufl.Measure("dS", domain=mesh, subdomain_data=integral_data)
def f_left(x):
return np.sin(x[0])
def f_right(x):
return x[0]
V_left = fem.functionspace(left_mesh, ("Lagrange", 1))
u_left = fem.Function(V_left)
u_left.interpolate(f_left)
V_right = fem.functionspace(right_mesh, ("Lagrange", 1))
u_right = fem.Function(V_right)
u_right.interpolate(f_right)
# Create single integral with different submeshes restrictions
x = ufl.SpatialCoordinate(mesh)
res = "+"
J = x[0] * u_left(res) * dS(left_interface_tag) + ufl.cos(x[0]) * u_right(res) * dS(
right_interface_tag
)
# We create an entity map from the parent mesh to the submesh, where
# the cell on either side of the interface is mapped to the same cell
mesh.topology.create_connectivity(tdim - 1, tdim)
f_to_c = mesh.topology.connectivity(tdim - 1, tdim)
parent_to_left = np.full(num_cells_local, -1, dtype=np.int32)
parent_to_right = np.full(num_cells_local, -1, dtype=np.int32)
parent_to_left[left_to_parent] = np.arange(len(left_to_parent))
parent_to_right[right_to_parent] = np.arange(len(right_to_parent))
for tag in [4, 5]:
for facet in facet_tag.find(tag):
cells = f_to_c.links(facet)
assert len(cells) == 2
left_map = parent_to_left[cells]
right_map = parent_to_right[cells]
parent_to_left[cells] = max(left_map)
parent_to_right[cells] = max(right_map)
entity_maps = {left_mesh: parent_to_left, right_mesh: parent_to_right}
J_compiled = fem.form(J, entity_maps=entity_maps)
J_local = fem.assemble_scalar(J_compiled)
J_sum = mesh.comm.allreduce(J_local, op=MPI.SUM)
vertex_map = mesh.topology.index_map(mesh.topology.dim - 1)
num_vertices_local = vertex_map.size_local
# Compute value of expression at left interface
if len(facets := facet_tag.find(left_interface_tag)) > 0:
assert len(facets) == 1
left_vertex = entities_to_geometry(mesh, mesh.topology.dim - 1, facets)
if left_vertex[0, 0] < num_vertices_local:
left_coord = mesh.geometry.x[left_vertex].reshape(3, -1)
left_val = left_coord[0, 0] * f_left(left_coord)[0]
else:
left_val = 0.0
else:
left_val = 0.0
# Compute value of expression at right interface
if len(facets := facet_tag.find(right_interface_tag)) > 0:
assert len(facets) == 1
right_vertex = entities_to_geometry(mesh, mesh.topology.dim - 1, facets)
if right_vertex[0, 0] < num_vertices_local:
right_coord = mesh.geometry.x[right_vertex].reshape(3, -1)
right_val = np.cos(right_coord[0, 0]) * f_right(right_coord)[0]
else:
right_val = 0.0
else:
right_val = 0.0
glob_left_val = mesh.comm.allreduce(left_val, op=MPI.SUM)
glob_right_val = mesh.comm.allreduce(right_val, op=MPI.SUM)
assert np.isclose(J_sum, glob_left_val + glob_right_val)
@pytest.mark.petsc4py
def test_mixed_measures():
"""Test block assembly of forms where the integration measure in each
block may be different"""
from dolfinx.fem.petsc import assemble_vector_block
comm = MPI.COMM_WORLD
msh = create_unit_square(comm, 16, 21, ghost_mode=GhostMode.none)
# Create a submesh of some cells
tdim = msh.topology.dim
smsh_cells = locate_entities(msh, tdim, lambda x: x[0] <= 0.5)
smsh, smsh_to_msh = create_submesh(msh, tdim, smsh_cells)[:2]
# Create function spaces over each mesh
V = fem.functionspace(msh, ("Lagrange", 1))
Q = fem.functionspace(smsh, ("Lagrange", 1))
# Define two integration measures, one over the mesh, the other over the submesh
dx_msh = ufl.Measure("dx", msh, subdomain_data=[(1, smsh_cells)])
dx_smsh = ufl.Measure("dx", smsh)
# Trial and test functions
u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
p, q = ufl.TrialFunction(Q), ufl.TestFunction(Q)
# First, assemble a block vector using both dx_msh and dx_smsh
a = [
[
fem.form(ufl.inner(u, v) * dx_msh),
fem.form(ufl.inner(p, v) * dx_smsh, entity_maps={msh: smsh_to_msh}),
],
[
fem.form(ufl.inner(u, q) * dx_smsh, entity_maps={msh: smsh_to_msh}),
fem.form(ufl.inner(p, q) * dx_smsh),
],
]
L = [fem.form(ufl.inner(2.3, v) * dx_msh), fem.form(ufl.inner(1.3, q) * dx_smsh)]
b0 = assemble_vector_block(L, a)
# Now, assemble the same vector using only dx_msh
cell_imap = msh.topology.index_map(tdim)
num_cells = cell_imap.size_local + cell_imap.num_ghosts
msh_to_smsh = np.full(num_cells, -1)
msh_to_smsh[smsh_to_msh] = np.arange(len(smsh_to_msh))
entity_maps = {smsh: msh_to_smsh}
L = [
fem.form(ufl.inner(2.3, v) * dx_msh),
fem.form(ufl.inner(1.3, q) * dx_msh(1), entity_maps=entity_maps),
]
b1 = assemble_vector_block(L, a)
# Check the results are the same
assert np.allclose(b0.norm(), b1.norm())
@pytest.mark.parametrize(
"msh",
[
pytest.param(
create_unit_interval(MPI.COMM_WORLD, 10),
marks=pytest.mark.xfail(
reason="Interior facet submesh of dimension 0 not supported in submesh creation",
strict=True,
),
),
create_unit_square(
MPI.COMM_WORLD, 10, 10, cell_type=CellType.triangle, ghost_mode=GhostMode.shared_facet
),
create_unit_cube(
MPI.COMM_WORLD,
3,
3,
3,
cell_type=CellType.tetrahedron,
ghost_mode=GhostMode.shared_facet,
),
],
)
def test_interior_facet_codim_1(msh):
"""
Check that assembly on an interior facet with coefficients defined on a co-dim 1
mesh gives the correct result.
"""
# Collect mesh properties
tdim = msh.topology.dim
fdim = tdim - 1
msh.topology.create_connectivity(fdim, tdim)
facet_imap = msh.topology.index_map(fdim)
num_facets = facet_imap.size_local + facet_imap.num_ghosts
# Mark all local and owned interior facets and "unmark" exterior facets
facet_vector = la.vector(facet_imap, 1, dtype=np.int32)
facet_vector.array[: facet_imap.size_local] = 1
facet_vector.array[facet_imap.size_local :] = 0
facet_vector.array[exterior_facet_indices(msh.topology)] = 0
facet_vector.scatter_forward()
interior_facets = np.flatnonzero(facet_vector.array)
# Create submesh with all owned and ghosted interior facets
submesh, sub_to_parent, _, _ = create_submesh(msh, fdim, interior_facets)
# Create inverse map
mesh_to_submesh = np.full(num_facets, -1)
mesh_to_submesh[sub_to_parent] = np.arange(len(sub_to_parent))
entity_maps = {submesh: mesh_to_submesh}
def assemble_interior_facet_formulation(formulation, entity_maps):
F = fem.form(formulation, entity_maps=entity_maps)
if F.rank == 0:
return msh.comm.allreduce(fem.assemble_scalar(F), op=MPI.SUM)
elif F.rank == 1:
b = fem.assemble_vector(F)
b.scatter_reverse(la.InsertMode.add)
b.scatter_forward()
return b
raise NotImplementedError(f"Unexpected formulation of rank {F.rank}")
def f(x):
return 2 + x[0] + 3 * x[1]
# Compare evaluation of finite element formulations on the submesh and the parent mesh
metadata = {"quadrature_degree": 4}
v = ufl.TestFunction(fem.functionspace(msh, ("DG", 2)))
# Assemble forms using function interpolated on the submesh
dS_submesh = ufl.Measure("dS", domain=msh, metadata=metadata)
j = fem.Function(fem.functionspace(submesh, ("Lagrange", 1)))
j.interpolate(f)
j.x.scatter_forward()
J_submesh = assemble_interior_facet_formulation(ufl.avg(j) * dS_submesh, entity_maps)
b_submesh = assemble_interior_facet_formulation(
ufl.inner(j, ufl.jump(v)) * dS_submesh, entity_maps
)
# Assemble reference value forms on the parent mesh using function defined with UFL
x = ufl.SpatialCoordinate(msh)
J_ref = assemble_interior_facet_formulation(ufl.avg(f(x)) * ufl.dS(metadata=metadata), None)
b_ref = assemble_interior_facet_formulation(
ufl.inner(f(x), ufl.jump(v)) * ufl.dS(metadata=metadata), None
)
# Ensure both are equivalent
tol = 100 * np.finfo(default_scalar_type()).eps
assert np.isclose(J_submesh, J_ref, atol=tol)
np.testing.assert_allclose(b_submesh.array, b_ref.array, atol=tol)
|