1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
"""Unit tests for assembly with Numba and CFFI kernels."""
# Copyright (C) 2018-2014 Chris N. Richardson, Michal Habera and Garth N. Wells
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier: LGPL-3.0-or-later
import os
import sys
from mpi4py import MPI
import numpy as np
import pytest
import dolfinx
import dolfinx.utils
import ffcx.codegeneration.utils
from dolfinx import cpp as _cpp
from dolfinx import fem, la
from dolfinx.common import TimingType, list_timings
from dolfinx.fem import Form, Function, IntegralType, form_cpp_class, functionspace
from dolfinx.mesh import create_unit_square
numba = pytest.importorskip("numba")
ufcx_signature = ffcx.codegeneration.utils.numba_ufcx_kernel_signature
sys.path.append(os.getcwd())
def tabulate_rank2(dtype, xdtype):
@numba.cfunc(ufcx_signature(dtype, xdtype), nopython=True)
def tabulate(A_, w_, c_, coords_, entity_local_index, cell_orientation):
A = numba.carray(A_, (3, 3), dtype=dtype)
coordinate_dofs = numba.carray(coords_, (3, 3), dtype=xdtype)
# Ke=∫Ωe BTe Be dΩ
x0, y0 = coordinate_dofs[0, :2]
x1, y1 = coordinate_dofs[1, :2]
x2, y2 = coordinate_dofs[2, :2]
# 2x Element area Ae
Ae = abs((x0 - x1) * (y2 - y1) - (y0 - y1) * (x2 - x1))
B = np.array([y1 - y2, y2 - y0, y0 - y1, x2 - x1, x0 - x2, x1 - x0], dtype=dtype).reshape(
2, 3
)
A[:, :] = np.dot(B.T, B) / (2 * Ae)
return tabulate
def tabulate_rank1(dtype, xdtype):
@numba.cfunc(ufcx_signature(dtype, xdtype), nopython=True)
def tabulate(b_, w_, c_, coords_, local_index, orientation):
b = numba.carray(b_, (3), dtype=dtype)
coordinate_dofs = numba.carray(coords_, (3, 3), dtype=xdtype)
x0, y0 = coordinate_dofs[0, :2]
x1, y1 = coordinate_dofs[1, :2]
x2, y2 = coordinate_dofs[2, :2]
# 2x Element area Ae
Ae = abs((x0 - x1) * (y2 - y1) - (y0 - y1) * (x2 - x1))
b[:] = Ae / 6.0
return tabulate
def tabulate_rank1_coeff(dtype, xdtype):
@numba.cfunc(ufcx_signature(dtype, xdtype), nopython=True)
def tabulate(b_, w_, c_, coords_, local_index, orientation):
b = numba.carray(b_, (3), dtype=dtype)
w = numba.carray(w_, (1), dtype=dtype)
coordinate_dofs = numba.carray(coords_, (3, 3), dtype=xdtype)
x0, y0 = coordinate_dofs[0, :2]
x1, y1 = coordinate_dofs[1, :2]
x2, y2 = coordinate_dofs[2, :2]
# 2x Element area Ae
Ae = abs((x0 - x1) * (y2 - y1) - (y0 - y1) * (x2 - x1))
b[:] = w[0] * Ae / 6.0
return tabulate
@pytest.mark.parametrize("dtype", [np.float32, np.float64, np.complex64, np.complex128])
def test_numba_assembly(dtype):
xdtype = np.real(dtype(0)).dtype
k2 = tabulate_rank2(dtype, xdtype)
k1 = tabulate_rank1(dtype, xdtype)
mesh = create_unit_square(MPI.COMM_WORLD, 13, 13, dtype=xdtype)
V = functionspace(mesh, ("Lagrange", 1))
cells = np.arange(mesh.topology.index_map(mesh.topology.dim).size_local, dtype=np.int32)
active_coeffs = np.array([], dtype=np.int8)
integrals = {
IntegralType.cell: [
(-1, k2.address, cells, active_coeffs),
(2, k2.address, np.arange(0), active_coeffs),
(12, k2.address, np.arange(0), active_coeffs),
]
}
formtype = form_cpp_class(dtype)
a = Form(formtype([V._cpp_object, V._cpp_object], integrals, [], [], False, {}, None))
integrals = {IntegralType.cell: [(-1, k1.address, cells, active_coeffs)]}
L = Form(formtype([V._cpp_object], integrals, [], [], False, {}, None))
A = dolfinx.fem.assemble_matrix(a)
A.scatter_reverse()
b = dolfinx.fem.assemble_vector(L)
b.scatter_reverse(dolfinx.la.InsertMode.add)
Anorm = np.sqrt(A.squared_norm())
bnorm = la.norm(b)
assert np.isclose(Anorm, 56.124860801609124)
assert np.isclose(bnorm, 0.0739710713711999)
list_timings(MPI.COMM_WORLD, [TimingType.wall])
@pytest.mark.parametrize("dtype", [np.float32, np.float64, np.complex64, np.complex128])
def test_coefficient(dtype):
xdtype = np.real(dtype(0)).dtype
k1 = tabulate_rank1_coeff(dtype, xdtype)
mesh = create_unit_square(MPI.COMM_WORLD, 13, 13, dtype=xdtype)
V = functionspace(mesh, ("Lagrange", 1))
DG0 = functionspace(mesh, ("DG", 0))
vals = Function(DG0, dtype=dtype)
vals.x.array[: vals.x.index_map.size_local] = 2
tdim = mesh.topology.dim
num_cells = mesh.topology.index_map(tdim).size_local + mesh.topology.index_map(tdim).num_ghosts
active_coeffs = np.array([0], dtype=np.int8)
integrals = {
IntegralType.cell: [(1, k1.address, np.arange(num_cells, dtype=np.int32), active_coeffs)]
}
formtype = form_cpp_class(dtype)
L = Form(formtype([V._cpp_object], integrals, [vals._cpp_object], [], False, {}, None))
b = dolfinx.fem.assemble_vector(L)
b.scatter_reverse(la.InsertMode.add)
bnorm = la.norm(b)
assert np.isclose(bnorm, 2.0 * 0.0739710713711999)
@pytest.mark.skip_in_parallel
def test_cffi_assembly():
pytest.importorskip("cffi")
mesh = create_unit_square(MPI.COMM_WORLD, 13, 13, dtype=np.float64)
V = functionspace(mesh, ("Lagrange", 1))
if mesh.comm.rank == 0:
from cffi import FFI
ffibuilder = FFI()
ffibuilder.set_source(
"_cffi_kernelA",
r"""
#include <math.h>
void tabulate_tensor_poissonA(double* restrict A, const double* w,
const double* c,
const double* restrict coordinate_dofs,
const int* entity_local_index,
const int* cell_orientation)
{
// Precomputed values of basis functions and precomputations
// FE* dimensions: [entities][points][dofs]
// PI* dimensions: [entities][dofs][dofs] or [entities][dofs]
// PM* dimensions: [entities][dofs][dofs]
static const double FE3_C0_D01_Q1[1][1][2] = { { { -1.0, 1.0 } } };
// Unstructured piecewise computations
const double J_c0 = coordinate_dofs[0] * FE3_C0_D01_Q1[0][0][0]
+ coordinate_dofs[3] * FE3_C0_D01_Q1[0][0][1];
const double J_c3 = coordinate_dofs[1] * FE3_C0_D01_Q1[0][0][0]
+ coordinate_dofs[7] * FE3_C0_D01_Q1[0][0][1];
const double J_c1 = coordinate_dofs[0] * FE3_C0_D01_Q1[0][0][0]
+ coordinate_dofs[6] * FE3_C0_D01_Q1[0][0][1];
const double J_c2 = coordinate_dofs[1] * FE3_C0_D01_Q1[0][0][0]
+ coordinate_dofs[4] * FE3_C0_D01_Q1[0][0][1];
double sp[20];
sp[0] = J_c0 * J_c3;
sp[1] = J_c1 * J_c2;
sp[2] = sp[0] + -1 * sp[1];
sp[3] = J_c0 / sp[2];
sp[4] = -1 * J_c1 / sp[2];
sp[5] = sp[3] * sp[3];
sp[6] = sp[3] * sp[4];
sp[7] = sp[4] * sp[4];
sp[8] = J_c3 / sp[2];
sp[9] = -1 * J_c2 / sp[2];
sp[10] = sp[9] * sp[9];
sp[11] = sp[8] * sp[9];
sp[12] = sp[8] * sp[8];
sp[13] = sp[5] + sp[10];
sp[14] = sp[6] + sp[11];
sp[15] = sp[12] + sp[7];
sp[16] = fabs(sp[2]);
sp[17] = sp[13] * sp[16];
sp[18] = sp[14] * sp[16];
sp[19] = sp[15] * sp[16];
// UFLACS block mode: preintegrated
A[0] = 0.5 * sp[19] + 0.5 * sp[18] + 0.5 * sp[18] + 0.5 * sp[17];
A[1] = -0.5 * sp[19] + -0.5 * sp[18];
A[2] = -0.5 * sp[18] + -0.5 * sp[17];
A[3] = -0.5 * sp[19] + -0.5 * sp[18];
A[4] = 0.5 * sp[19];
A[5] = 0.5 * sp[18];
A[6] = -0.5 * sp[18] + -0.5 * sp[17];
A[7] = 0.5 * sp[18];
A[8] = 0.5 * sp[17];
}
void tabulate_tensor_poissonL(double* restrict A, const double* w,
const double* c,
const double* restrict coordinate_dofs,
const int* entity_local_index,
const int* cell_orientation)
{
// Precomputed values of basis functions and precomputations
// FE* dimensions: [entities][points][dofs]
// PI* dimensions: [entities][dofs][dofs] or [entities][dofs]
// PM* dimensions: [entities][dofs][dofs]
static const double FE4_C0_D01_Q1[1][1][2] = { { { -1.0, 1.0 } } };
// Unstructured piecewise computations
const double J_c0 = coordinate_dofs[0] * FE4_C0_D01_Q1[0][0][0]
+ coordinate_dofs[3] * FE4_C0_D01_Q1[0][0][1];
const double J_c3 = coordinate_dofs[1] * FE4_C0_D01_Q1[0][0][0]
+ coordinate_dofs[7] * FE4_C0_D01_Q1[0][0][1];
const double J_c1 = coordinate_dofs[0] * FE4_C0_D01_Q1[0][0][0]
+ coordinate_dofs[6] * FE4_C0_D01_Q1[0][0][1];
const double J_c2 = coordinate_dofs[1] * FE4_C0_D01_Q1[0][0][0]
+ coordinate_dofs[4] * FE4_C0_D01_Q1[0][0][1];
double sp[4];
sp[0] = J_c0 * J_c3;
sp[1] = J_c1 * J_c2;
sp[2] = sp[0] + -1 * sp[1];
sp[3] = fabs(sp[2]);
A[0] = 0.1666666666666667 * sp[3];
A[1] = 0.1666666666666667 * sp[3];
A[2] = 0.1666666666666667 * sp[3];
}
""",
)
ffibuilder.cdef(
"""
void tabulate_tensor_poissonA(double* restrict A, const double* w,
const double* c,
const double* restrict coordinate_dofs,
const int* entity_local_index,
const int* cell_orientation);
void tabulate_tensor_poissonL(double* restrict A, const double* w,
const double* c,
const double* restrict coordinate_dofs,
const int* entity_local_index,
const int* cell_orientation);
"""
)
ffibuilder.compile(verbose=True)
mesh.comm.Barrier()
from _cffi_kernelA import ffi, lib
cells = np.arange(mesh.topology.index_map(mesh.topology.dim).size_local, dtype=np.int32)
ptrA = ffi.cast("intptr_t", ffi.addressof(lib, "tabulate_tensor_poissonA"))
active_coeffs = np.array([], dtype=np.int8)
integrals = {IntegralType.cell: [(-1, ptrA, cells, active_coeffs)]}
a = Form(
_cpp.fem.Form_float64([V._cpp_object, V._cpp_object], integrals, [], [], False, {}, None)
)
ptrL = ffi.cast("intptr_t", ffi.addressof(lib, "tabulate_tensor_poissonL"))
integrals = {IntegralType.cell: [(-1, ptrL, cells, active_coeffs)]}
L = Form(_cpp.fem.Form_float64([V._cpp_object], integrals, [], [], False, {}, None))
A = fem.assemble_matrix(a)
A.scatter_reverse()
assert np.isclose(np.sqrt(A.squared_norm()), 56.124860801609124)
b = fem.assemble_vector(L)
b.scatter_reverse(la.InsertMode.add)
assert np.isclose(la.norm(b), 0.0739710713711999)
|