1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
|
#
# Author: Martin Sandve Alnes
# Date: 2008-12-22
#
# Modified by Garth N. Wells, 2009
from ufl import (Coefficient, Constant, FacetNormal, FiniteElement, Identity,
SpatialCoordinate, TensorElement, TestFunction, TrialFunction,
VectorElement, derivative, det, diff, dot, ds, dx, exp, grad,
inner, inv, tetrahedron, tr, variable)
# Cell and its properties
cell = tetrahedron
d = cell.geometric_dimension()
N = FacetNormal(cell)
x = SpatialCoordinate(cell)
# Elements
u_element = VectorElement("CG", cell, 2)
p_element = FiniteElement("CG", cell, 1)
A_element = TensorElement("CG", cell, 1)
# Test and trial functions
v = TestFunction(u_element)
w = TrialFunction(u_element)
# Displacement at current and two previous timesteps
u = Coefficient(u_element)
up = Coefficient(u_element)
upp = Coefficient(u_element)
# Time parameters
dt = Constant(cell)
# Fiber field
A = Coefficient(A_element)
# External forces
T = Coefficient(u_element)
p0 = Coefficient(p_element)
# Material parameters FIXME
rho = Constant(cell)
K = Constant(cell)
c00 = Constant(cell)
c11 = Constant(cell)
c22 = Constant(cell)
# Deformation gradient
I = Identity(d)
F = I + grad(u)
F = variable(F)
Finv = inv(F)
J = det(F)
# Left Cauchy-Green deformation tensor
B = F * F.T
I1_B = tr(B)
I2_B = (I1_B**2 - tr(B * B)) / 2
I3_B = J**2
# Right Cauchy-Green deformation tensor
C = F.T * F
I1_C = tr(C)
I2_C = (I1_C**2 - tr(C * C)) / 2
I3_C = J**2
# Green strain tensor
E = (C - I) / 2
# Mapping of strain in fiber directions
Ef = A * E * A.T
# Strain energy function W(Q(Ef))
Q = c00 * Ef[0, 0]**2 + c11 * Ef[1, 1]**2 + c22 * Ef[2, 2]**2 # FIXME: insert some simple law here
W = (K / 2) * (exp(Q) - 1) # + p stuff
# First Piola-Kirchoff stress tensor
P = diff(W, F)
# Acceleration term discretized with finite differences
k = dt / rho
acc = (u - 2 * up + upp)
# Residual equation # FIXME: Can contain errors, not tested!
a_F = inner(acc, v) * dx \
+ k * inner(P, grad(v)) * dx \
- k * dot(J * Finv * T, v) * ds(0) \
- k * dot(J * Finv * p0 * N, v) * ds(1)
# Jacobi matrix of residual equation
a_J = derivative(a_F, u, w)
# Export forms
forms = [a_F, a_J]
|