1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
# Copyright (C) 2007-2017 Anders Logg and Garth N. Wells
#
# This file is part of FFCx.
#
# FFCx is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFCx is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFCx. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Marie E. Rognes, 2010
# Modified by Lizao Li, 2016
"Unit tests for FFCx"
import numpy
import pytest
from ffcx.element_interface import create_element
from ufl import FiniteElement
def element_coords(cell):
if cell == "interval":
return [(0,), (1,)]
elif cell == "triangle":
return [(0, 0), (1, 0), (0, 1)]
elif cell == "tetrahedron":
return [(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)]
elif cell == "quadrilateral":
return [(0, 0), (1, 0), (0, 1), (1, 1)]
elif cell == "hexahedron":
return [(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1)]
else:
RuntimeError("Unknown cell type")
def random_point(shape):
w = numpy.random.random(len(shape))
return sum([numpy.array(shape[i]) * w[i] for i in range(len(shape))]) / sum(w)
@pytest.mark.parametrize("degree, expected_dim", [(1, 3), (2, 6), (3, 10)])
def test_continuous_lagrange(degree, expected_dim):
"Test space dimensions of continuous Lagrange elements."
P = create_element(FiniteElement("Lagrange", "triangle", degree))
assert P.dim == expected_dim
@pytest.mark.parametrize("degree, expected_dim", [(1, 4), (2, 9), (3, 16)])
def xtest_continuous_lagrange_quadrilateral(degree, expected_dim):
"Test space dimensions of continuous TensorProduct elements (quadrilateral)."
P = create_element(FiniteElement("Lagrange", "quadrilateral", degree))
assert P.dim == expected_dim
@pytest.mark.parametrize("degree, expected_dim", [(1, 4), (2, 9), (3, 16)])
def xtest_continuous_lagrange_quadrilateral_spectral(degree, expected_dim):
"Test space dimensions of continuous TensorProduct elements (quadrilateral)."
P = create_element(FiniteElement("Lagrange", "quadrilateral", degree, variant="spectral"))
assert P.dim == expected_dim
@pytest.mark.parametrize("degree, expected_dim", [(0, 1), (1, 3), (2, 6), (3, 10)])
def test_discontinuous_lagrange(degree, expected_dim):
"Test space dimensions of discontinuous Lagrange elements."
P = create_element(FiniteElement("DG", "triangle", degree))
assert P.dim == expected_dim
@pytest.mark.parametrize("degree, expected_dim",
[(0, 3), (1, 9), (2, 18), (3, 30)])
def test_regge(degree, expected_dim):
"Test space dimensions of generalized Regge element."
P = create_element(FiniteElement("Regge", "triangle", degree))
assert P.dim == expected_dim
@pytest.mark.parametrize("degree, expected_dim",
[(0, 3), (1, 9), (2, 18), (3, 30)])
def xtest_hhj(degree, expected_dim):
"Test space dimensions of Hellan-Herrmann-Johnson element."
P = create_element(FiniteElement("HHJ", "triangle", degree))
assert P.dim == expected_dim
class TestFunctionValues():
"""These tests examine tabulate gives the correct answers for a the
supported (non-mixed) for low degrees"""
# FIXME: Add tests for NED and BDM/RT in 3D.
# Shape (basis) functions on reference element
reference_interval_1 = [lambda x: 1 - x[0], lambda x: x[0]]
reference_triangle_1 = [lambda x: 1 - x[0] - x[1], lambda x: x[0], lambda x: x[1]]
reference_tetrahedron_1 = [lambda x: 1 - x[0] - x[1] - x[2], lambda x: x[0],
lambda x: x[1], lambda x: x[2]]
reference_triangle_bdm1 = [lambda x: (2 * x[0], -x[1]),
lambda x: (-x[0], 2 * x[1]),
lambda x: (2 - 2 * x[0] - 3 * x[1], x[1]),
lambda x: (- 1 + x[0] + 3 * x[1], - 2 * x[1]),
lambda x: (-x[0], -2 + 3 * x[0] + 2 * x[1]),
lambda x: (2 * x[0], 1 - 3 * x[0] - x[1])]
reference_triangle_rt1 = [lambda x: (-x[0], -x[1]), lambda x: (x[0] - 1, x[1]),
lambda x: (-x[0], 1 - x[1])]
reference_triangle_rt2 = [lambda x: (x[0] - 3 * x[0]**2, x[1] - 3 * x[0] * x[1]),
lambda x: (x[0] - 3 * x[0] * x[1], x[1] - 3 * x[1]**2),
lambda x: (-2 + 5 * x[0] + 3 * x[1] - 3 * x[0] * x[1] - 3 * x[0]**2,
2 * x[1] - 3 * x[0] * x[1] - 3 * x[1]**2),
lambda x: (1.0 - x[0] - 3 * x[1] + 3 * x[0] * x[1], x[1] + 3 * x[1]**2),
lambda x: (-2 * x[0] + 3 * x[0] * x[1] + 3 * x[0] ** 2,
2 - 3 * x[0] - 5 * x[1] + 3 * x[0] * x[1] + 3 * x[1]**2),
lambda x: (x[0] - 3 * x[0]**2,
-1 + 3 * x[0] + x[1] - 3 * x[0] * x[1]),
lambda x: (-6 * x[0] + 3 * x[0] * x[1] + 6 * x[0]**2,
-3 * x[1] + 6 * x[0] * x[1] + 3 * x[1]**2),
lambda x: (-3 * x[0] + 6 * x[0] * x[1] + 3 * x[0]**2,
-6 * x[1] + 3 * x[0] * x[1] + 6 * x[1]**2)]
reference_triangle_ned1 = [lambda x: (-x[1], x[0]), lambda x: (x[1], 1 - x[0]),
lambda x: (1.0 - x[1], x[0])]
reference_tetrahedron_rt1 = [lambda x: (2 ** 0.5 * x[0], 2 ** 0.5 * x[1], 2 ** 0.5 * x[2]),
lambda x: (2 ** 0.5 - 2 ** 0.5 * x[0], -2 ** 0.5 * x[1], -2 ** 0.5 * x[2]),
lambda x: (2 ** 0.5 * x[0], 2 ** 0.5 * x[1] - 2 ** 0.5, 2 ** 0.5 * x[2]),
lambda x: (-2 ** 0.5 * x[0], -2 ** 0.5 * x[1], 2 ** 0.5 - 2 ** 0.5 * x[2])]
reference_tetrahedron_bdm1 = [lambda x: (-3 * x[0], x[1], x[2]),
lambda x: (x[0], -3 * x[1], x[2]),
lambda x: (x[0], x[1], -3 * x[2]),
lambda x: (-3.0 + 3 * x[0] + 4 * x[1] + 4 * x[2], -x[1], -x[2]),
lambda x: (1.0 - x[0] - 4 * x[1], 3 * x[1], -x[2]),
lambda x: (1.0 - x[0] - 4 * x[2], -x[1], 3 * x[2]),
lambda x: (x[0], 3.0 - 4 * x[0] - 3 * x[1] - 4 * x[2], x[2]),
lambda x: (-3 * x[0], -1.0 + 4 * x[0] + x[1], x[2]),
lambda x: (x[0], -1.0 + x[1] + 4 * x[2], -3 * x[2]),
lambda x: (-x[0], -x[1], -3.0 + 4 * x[0] + 4 * x[1] + 3 * x[2]),
lambda x: (3 * x[0], -x[1], 1.0 - 4 * x[0] - x[2]),
lambda x: (-x[0], 3 * x[1], 1.0 - 4 * x[1] - x[2])]
reference_tetrahedron_ned1 = [lambda x: (0.0, -x[2], x[1]),
lambda x: (-x[2], 0.0, x[0]),
lambda x: (-x[1], x[0], 0.0),
lambda x: (x[2], x[2], 1.0 - x[0] - x[1]),
lambda x: (x[1], 1.0 - x[0] - x[2], x[1]),
lambda x: (1.0 - x[1] - x[2], x[0], x[0])]
reference_quadrilateral_1 = [lambda x: (1 - x[0]) * (1 - x[1]),
lambda x: (1 - x[0]) * x[1],
lambda x: x[0] * (1 - x[1]),
lambda x: x[0] * x[1]]
reference_hexahedron_1 = [lambda x: (1 - x[0]) * (1 - x[1]) * (1 - x[2]),
lambda x: (1 - x[0]) * (1 - x[1]) * x[2],
lambda x: (1 - x[0]) * x[1] * (1 - x[2]),
lambda x: (1 - x[0]) * x[1] * x[2],
lambda x: x[0] * (1 - x[1]) * (1 - x[2]),
lambda x: x[0] * (1 - x[1]) * x[2],
lambda x: x[0] * x[1] * (1 - x[2]),
lambda x: x[0] * x[1] * x[2]]
# Tests to perform
tests = [("Lagrange", "interval", 1, reference_interval_1),
("Lagrange", "triangle", 1, reference_triangle_1),
("Lagrange", "tetrahedron", 1, reference_tetrahedron_1),
# ("Lagrange", "quadrilateral", 1, reference_quadrilateral_1),
# ("Lagrange", "hexahedron", 1, reference_hexahedron_1),
("Discontinuous Lagrange", "interval", 1, reference_interval_1),
("Discontinuous Lagrange", "triangle", 1, reference_triangle_1),
("Discontinuous Lagrange", "tetrahedron", 1, reference_tetrahedron_1),
# ("Brezzi-Douglas-Marini", "triangle", 1, reference_triangle_bdm1),
("Raviart-Thomas", "triangle", 1, reference_triangle_rt1),
# ("Raviart-Thomas", "triangle", 2, reference_triangle_rt2),
# ("Discontinuous Raviart-Thomas", "triangle", 1, reference_triangle_rt1),
# ("Discontinuous Raviart-Thomas", "triangle", 2, reference_triangle_rt2),
("N1curl", "triangle", 1, reference_triangle_ned1),
("Raviart-Thomas", "tetrahedron", 1, reference_tetrahedron_rt1),
# ("Discontinuous Raviart-Thomas", "tetrahedron", 1, reference_tetrahedron_rt1),
# ("Brezzi-Douglas-Marini", "tetrahedron", 1, reference_tetrahedron_bdm1),
("N1curl", "tetrahedron", 1, reference_tetrahedron_ned1)]
@pytest.mark.parametrize("family, cell, degree, reference", tests)
def test_values(self, family, cell, degree, reference):
# Create element
element = create_element(FiniteElement(family, cell, degree))
# Get some points and check basis function values at points
points = [random_point(element_coords(cell)) for i in range(5)]
for x in points:
table = element.tabulate(0, (x,))
basis = table[0]
if sum(element.value_shape()) == 1:
for i, value in enumerate(basis[0]):
assert numpy.isclose(value, reference[i](x))
else:
for i, ref in enumerate(reference):
assert numpy.allclose(basis[0][i::len(reference)], ref(x))
|