File: test_jit_expression.py

package info (click to toggle)
fenics-ffcx 1%3A0.5.0-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 964 kB
  • sloc: python: 7,534; ansic: 194; makefile: 58
file content (218 lines) | stat: -rw-r--r-- 7,878 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# -*- coding: utf-8 -*-
# Copyright (C) 2019-2022 Michal Habera and Jørgen S. Dokken
#
# This file is part of FFCx.(https://www.fenicsproject.org)
#
# SPDX-License-Identifier:    LGPL-3.0-or-later

import basix
import cffi
import ffcx.codegeneration.jit
import numpy as np
import ufl
from ffcx.naming import cdtype_to_numpy, scalar_to_value_type


def float_to_type(name):
    """Map a string name to C and NumPy types"""
    if name == "double":
        return "double", np.float64
    elif name == "double complex":
        return "double _Complex", np.complex128
    elif name == "float":
        return "float", np.float32
    elif name == "float complex":
        return "float _Complex", np.complex64
    elif name == "long double":
        return "long double", np.longdouble
    else:
        raise RuntimeError("Unknown C type for: {}".format(name))


def test_matvec(compile_args):
    """Test evaluation of linear rank-0 form.

    Evaluates expression c * A_ij * f_j where c is a Constant,
    A_ij is a user specified constant matrix and f_j is j-th component
    of user specified vector-valued finite element function (in P1 space).

    """
    e = ufl.VectorElement("P", "triangle", 1)
    mesh = ufl.Mesh(e)
    V = ufl.FunctionSpace(mesh, e)
    f = ufl.Coefficient(V)

    a_mat = np.array([[1.0, 2.0], [1.0, 1.0]])
    a = ufl.as_matrix(a_mat)
    expr = ufl.Constant(mesh) * ufl.dot(a, f)

    points = np.array([[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]])
    obj, module, code = ffcx.codegeneration.jit.compile_expressions(
        [(expr, points)], cffi_extra_compile_args=compile_args)

    ffi = cffi.FFI()
    expression = obj[0]

    c_type, np_type = float_to_type("double")

    A = np.zeros((3, 2), dtype=np_type)
    f_mat = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])

    # Coefficient storage XYXYXY
    w = np.array(f_mat.T.flatten(), dtype=np_type)
    c = np.array([0.5], dtype=np_type)
    entity_index = np.array([0], dtype=np.intc)
    quad_perm = np.array([0], dtype=np.dtype("uint8"))

    geom_type = scalar_to_value_type(c_type)
    np_gtype = cdtype_to_numpy(geom_type)

    # Coords storage XYZXYZXYZ
    coords = np.array([[0.0, 0.0, 0.0],
                       [1.0, 0.0, 0.0],
                       [0.0, 1.0, 0.0]], dtype=np_gtype)
    expression.tabulate_tensor_float64(
        ffi.cast('{type} *'.format(type=c_type), A.ctypes.data),
        ffi.cast('{type} *'.format(type=c_type), w.ctypes.data),
        ffi.cast('{type} *'.format(type=c_type), c.ctypes.data),
        ffi.cast(f'{geom_type} *', coords.ctypes.data),
        ffi.cast('int *', entity_index.ctypes.data),
        ffi.cast('uint8_t *', quad_perm.ctypes.data))

    # Check the computation against correct NumPy value
    assert np.allclose(A, 0.5 * np.dot(a_mat, f_mat).T)

    # Prepare NumPy array of points attached to the expression
    length = expression.num_points * expression.topological_dimension
    points_kernel = np.frombuffer(ffi.buffer(expression.points, length * ffi.sizeof("double")), np.double)
    points_kernel = points_kernel.reshape(points.shape)
    assert np.allclose(points, points_kernel)

    # Check the value shape attached to the expression
    value_shape = np.frombuffer(ffi.buffer(expression.value_shape,
                                           expression.num_components * ffi.sizeof("int")), np.intc)
    assert np.allclose(expr.ufl_shape, value_shape)


def test_rank1(compile_args):
    """Tests evaluation of rank-1 form.

    Builds a linear operator which takes vector-valued functions in P1 space
    and evaluates expression [u_y, u_x] + grad(u_x) at specified points.

    """
    e = ufl.VectorElement("P", "triangle", 1)
    mesh = ufl.Mesh(e)

    V = ufl.FunctionSpace(mesh, e)
    u = ufl.TrialFunction(V)

    expr = ufl.as_vector([u[1], u[0]]) + ufl.grad(u[0])

    points = np.array([[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]])
    obj, module, code = ffcx.codegeneration.jit.compile_expressions(
        [(expr, points)], cffi_extra_compile_args=compile_args)

    ffi = cffi.FFI()
    expression = obj[0]

    c_type, np_type = float_to_type("double")
    geom_type = scalar_to_value_type(c_type)
    np_gtype = cdtype_to_numpy(geom_type)

    # 2 components for vector components of expression
    # 3 points of evaluation
    # 6 degrees of freedom for rank1 form
    A = np.zeros((3, 2, 6), dtype=np_type)

    # Coefficient storage XYXYXY
    w = np.array([0.0], dtype=np_type)
    c = np.array([0.0], dtype=np_type)
    entity_index = np.array([0], dtype=np.intc)
    quad_perm = np.array([0], dtype=np.dtype("uint8"))

    # Coords storage XYZXYZXYZ
    coords = np.zeros((points.shape[0], 3), dtype=np_gtype)
    coords[:, :2] = points
    expression.tabulate_tensor_float64(
        ffi.cast('{type} *'.format(type=c_type), A.ctypes.data),
        ffi.cast('{type} *'.format(type=c_type), w.ctypes.data),
        ffi.cast('{type} *'.format(type=c_type), c.ctypes.data),
        ffi.cast(f'{geom_type} *', coords.ctypes.data),
        ffi.cast('int *', entity_index.ctypes.data),
        ffi.cast('uint8_t *', quad_perm.ctypes.data))

    f = np.array([[1.0, 2.0, 3.0], [-4.0, -5.0, 6.0]])

    # Apply the operator on some test input data
    u_ffcx = np.einsum("ijk,k", A, f.T.flatten())

    # Compute the correct values using NumPy
    # Gradf0 is gradient of f[0], each component of the gradient is constant
    gradf0 = np.array([[f[0, 1] - f[0, 0], f[0, 1] - f[0, 0], f[0, 1] - f[0, 0]],
                       [f[0, 2] - f[0, 0], f[0, 2] - f[0, 0], f[0, 2] - f[0, 0]]])

    u_correct = np.array([f[1], f[0]]) + gradf0

    assert np.allclose(u_ffcx, u_correct.T)


def test_elimiate_zero_tables_tensor(compile_args):
    """
    Test elimination of tensor-valued expressions with zero tables
    """
    cell = "tetrahedron"
    c_el = ufl.VectorElement("P", cell, 1)
    mesh = ufl.Mesh(c_el)

    e = ufl.FiniteElement("CG", cell, 1)
    V = ufl.FunctionSpace(mesh, e)
    u = ufl.Coefficient(V)
    expr = ufl.sym(ufl.as_tensor([[u, u.dx(0).dx(0), 0],
                                  [u.dx(1), u.dx(1), 0],
                                  [0, 0, 0]]))

    # Get vectices of cell
    # Coords storage XYZXYZXYZ
    basix_c_e = basix.create_element(basix.ElementFamily.P, basix.cell.string_to_type(cell), 1, False)
    coords = basix_c_e.points

    # Using same basix element for coordinate element and coefficient
    coeff_points = basix_c_e.points

    # Compile expression at interpolation points of second order Lagrange space
    b_el = basix.create_element(basix.ElementFamily.P, basix.cell.string_to_type(cell), 0, True)
    points = b_el.points
    obj, module, code = ffcx.codegeneration.jit.compile_expressions(
        [(expr, points)], cffi_extra_compile_args=compile_args)

    ffi = cffi.FFI()
    expression = obj[0]
    c_type, np_type = float_to_type("double")

    output = np.zeros(9 * points.shape[0], dtype=np_type)

    # Define coefficients for u = x + 2 * y
    u_coeffs = u_coeffs = coeff_points.T[0] + 2 * coeff_points.T[1]
    consts = np.array([], dtype=np_type)
    entity_index = np.array([0], dtype=np.intc)
    quad_perm = np.array([0], dtype=np.dtype("uint8"))

    expression.tabulate_tensor_float64(
        ffi.cast('{type} *'.format(type=c_type), output.ctypes.data),
        ffi.cast('{type} *'.format(type=c_type), u_coeffs.ctypes.data),
        ffi.cast('{type} *'.format(type=c_type), consts.ctypes.data),
        ffi.cast('double *', coords.ctypes.data),
        ffi.cast('int *', entity_index.ctypes.data),
        ffi.cast('uint8_t *', quad_perm.ctypes.data))

    def exact_expr(x):
        val = np.zeros((9, x.shape[1]), dtype=np_type)
        val[0] = x[0] + 2 * x[1]
        val[1] = 0 + 0.5 * 2
        val[3] = 0.5 * 2 + 0
        val[4] = 2
        return val.T
    exact = exact_expr(points.T)

    assert np.allclose(exact, output)