1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
__authors__ = "Martin Sandve Alnæs"
__date__ = "2008-03-12 -- 2009-01-28"
# Modified by Anders Logg, 2008
# Modified by Garth N. Wells, 2009
import pytest
from utils import LagrangeElement
from ufl import (
Argument,
Coefficient,
FacetNormal,
FunctionSpace,
Mesh,
SpatialCoordinate,
TestFunction,
TrialFunction,
adjoint,
div,
dot,
ds,
dx,
grad,
inner,
sin,
triangle,
)
from ufl.algorithms import (
compute_form_data,
expand_derivatives,
expand_indices,
extract_arguments,
extract_coefficients,
extract_elements,
extract_unique_elements,
)
from ufl.corealg.traversal import (
post_traversal,
pre_traversal,
unique_post_traversal,
unique_pre_traversal,
)
# TODO: add more tests, covering all utility algorithms
@pytest.fixture(scope="module")
def element():
return LagrangeElement(triangle, 1)
@pytest.fixture(scope="module")
def domain():
return Mesh(LagrangeElement(triangle, 1, (2,)))
@pytest.fixture(scope="module")
def space(element, domain):
return FunctionSpace(domain, element)
@pytest.fixture(scope="module")
def arguments(space):
v = TestFunction(space)
u = TrialFunction(space)
return (v, u)
@pytest.fixture(scope="module")
def coefficients(space):
c = Coefficient(space)
f = Coefficient(space)
return (c, f)
@pytest.fixture
def forms(arguments, coefficients, domain):
v, u = arguments
c, f = coefficients
n = FacetNormal(domain)
a = u * v * dx
L = f * v * dx
b = u * v * dx(0) + inner(c * grad(u), grad(v)) * dx(1) + dot(n, grad(u)) * v * ds + f * v * dx
return (a, L, b)
def test_extract_arguments_vs_fixture(arguments, forms):
assert arguments == tuple(extract_arguments(forms[0]))
assert tuple(arguments[:1]) == tuple(extract_arguments(forms[1]))
def test_extract_coefficients_vs_fixture(coefficients, forms):
assert coefficients == tuple(extract_coefficients(forms[2]))
def test_extract_elements_and_extract_unique_elements(forms, element, domain):
b = forms[2]
integrals = b.integrals_by_type("cell")
integrals[0].integrand()
element1 = element
element2 = element
space1 = FunctionSpace(domain, element1)
space2 = FunctionSpace(domain, element2)
v = TestFunction(space1)
u = TrialFunction(space2)
a = u * v * dx
assert extract_elements(a) == (element1, element2)
assert extract_unique_elements(a) == (element1,)
def test_pre_and_post_traversal(space):
v = TestFunction(space)
f = Coefficient(space)
g = Coefficient(space)
p1 = f * v
p2 = g * v
s = p1 + p2
# NB! These traversal algorithms are intended to guarantee only
# parent before child and vice versa, not this particular
# ordering:
assert list(pre_traversal(s)) == [s, p2, g, v, p1, f, v]
assert list(post_traversal(s)) == [g, v, p2, f, v, p1, s]
assert list(unique_pre_traversal(s)) == [s, p2, g, v, p1, f]
assert list(unique_post_traversal(s)) == [v, f, p1, g, p2, s]
def test_expand_indices(domain):
element = LagrangeElement(triangle, 2)
space = FunctionSpace(domain, element)
v = TestFunction(space)
u = TrialFunction(space)
def evaluate(form):
return form.cell_integral()[0].integrand()(
(), {v: 3, u: 5}
) # TODO: How to define values of derivatives?
a = div(grad(v)) * u * dx
# a1 = evaluate(a)
a = expand_derivatives(a)
# a2 = evaluate(a)
a = expand_indices(a)
# a3 = evaluate(a)
# TODO: Compare a1, a2, a3
# TODO: Test something more
def test_adjoint(domain):
cell = triangle
V1 = LagrangeElement(cell, 1)
V2 = LagrangeElement(cell, 2)
s1 = FunctionSpace(domain, V1)
s2 = FunctionSpace(domain, V2)
u = TrialFunction(s1)
v = TestFunction(s2)
assert u.number() > v.number()
u2 = Argument(s1, 2)
v2 = Argument(s2, 3)
assert u2.number() < v2.number()
a = u * v * dx
a_arg_degrees = [arg.ufl_element().embedded_superdegree for arg in extract_arguments(a)]
assert a_arg_degrees == [2, 1]
b = adjoint(a)
b_arg_degrees = [arg.ufl_element().embedded_superdegree for arg in extract_arguments(b)]
assert b_arg_degrees == [1, 2]
c = adjoint(a, (u2, v2))
c_arg_degrees = [arg.ufl_element().embedded_superdegree for arg in extract_arguments(c)]
assert c_arg_degrees == [1, 2]
d = adjoint(b)
d_arg_degrees = [arg.ufl_element().embedded_superdegree for arg in extract_arguments(d)]
assert d_arg_degrees == [2, 1]
def test_remove_component_tensors(domain):
x = SpatialCoordinate(domain)
u = sin(x[0])
f = div(grad(div(grad(u))))
form = f * dx
fd = compute_form_data(form, do_remove_component_tensors=True)
assert "ComponentTensor" not in repr(fd.preprocessed_form)
|