1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
import cmath
import pytest
from utils import LagrangeElement
from ufl import (
Coefficient,
FunctionSpace,
Mesh,
TestFunction,
TrialFunction,
as_tensor,
as_ufl,
atan,
conditional,
conj,
cos,
cosh,
dot,
dx,
exp,
ge,
grad,
gt,
imag,
inner,
le,
ln,
lt,
max_value,
min_value,
outer,
real,
sin,
sqrt,
triangle,
)
from ufl.algebra import Conj, Imag, Real
from ufl.algorithms import estimate_total_polynomial_degree
from ufl.algorithms.apply_algebra_lowering import apply_algebra_lowering
from ufl.algorithms.comparison_checker import ComplexComparisonError, do_comparison_check
from ufl.algorithms.formtransformations import compute_form_adjoint
from ufl.algorithms.remove_complex_nodes import remove_complex_nodes
from ufl.constantvalue import ComplexValue, Zero
def test_conj(self):
z1 = ComplexValue(1 + 2j)
z2 = ComplexValue(1 - 2j)
assert z1 == Conj(z2)
assert z2 == Conj(z1)
def test_real(self):
z0 = Zero()
z1 = as_ufl(1.0)
z2 = ComplexValue(1j)
z3 = ComplexValue(1 + 1j)
assert Real(z1) == z1
assert Real(z3) == z1
assert Real(z2) == z0
def test_imag(self):
z0 = Zero()
z1 = as_ufl(1.0)
z2 = as_ufl(1j)
z3 = ComplexValue(1 + 1j)
assert Imag(z2) == z1
assert Imag(z3) == z1
assert Imag(z1) == z0
def test_compute_form_adjoint(self):
cell = triangle
element = LagrangeElement(cell, 1)
domain = Mesh(LagrangeElement(cell, 1, (2,)))
space = FunctionSpace(domain, element)
u = TrialFunction(space)
v = TestFunction(space)
a = inner(grad(u), grad(v)) * dx
assert compute_form_adjoint(a) == conj(inner(grad(v), grad(u))) * dx
def test_complex_algebra(self):
z1 = ComplexValue(1j)
z2 = ComplexValue(1 + 1j)
# Remember that ufl.algebra functions return ComplexValues, but
# ufl.mathfunctions return complex Python scalar
# Any operations with a ComplexValue and a complex Python scalar
# promote to ComplexValue
assert z1 * z2 == ComplexValue(-1 + 1j)
assert z2 / z1 == ComplexValue(1 - 1j)
assert pow(z2, z1) == ComplexValue((1 + 1j) ** 1j)
assert sqrt(z2) * as_ufl(1) == ComplexValue(cmath.sqrt(1 + 1j))
assert (sin(z2) + cosh(z2) - atan(z2)) * z1 == ComplexValue(
(cmath.sin(1 + 1j) + cmath.cosh(1 + 1j) - cmath.atan(1 + 1j)) * 1j
)
assert (abs(z2) - ln(z2)) / exp(z1) == ComplexValue(
(abs(1 + 1j) - cmath.log(1 + 1j)) / cmath.exp(1j)
)
def test_automatic_simplification(self):
cell = triangle
element = LagrangeElement(cell, 1)
domain = Mesh(LagrangeElement(cell, 1, (2,)))
space = FunctionSpace(domain, element)
v = TestFunction(space)
u = TrialFunction(space)
assert inner(u, v) == u * conj(v)
assert dot(u, v) == u * v
assert outer(u, v) == conj(u) * v
def test_apply_algebra_lowering_complex(self):
cell = triangle
element = LagrangeElement(cell, 1)
domain = Mesh(LagrangeElement(cell, 1, (2,)))
space = FunctionSpace(domain, element)
v = TestFunction(space)
u = TrialFunction(space)
gv = grad(v)
gu = grad(u)
a = dot(gu, gv)
b = inner(gv, gu)
c = outer(gu, gv)
lowered_a = apply_algebra_lowering(a)
lowered_b = apply_algebra_lowering(b)
lowered_c = apply_algebra_lowering(c)
lowered_a_index = lowered_a.index()
lowered_b_index = lowered_b.index()
lowered_c_indices = lowered_c.indices()
assert lowered_a == gu[lowered_a_index] * gv[lowered_a_index]
assert lowered_b == gv[lowered_b_index] * conj(gu[lowered_b_index])
assert lowered_c == as_tensor(
conj(gu[lowered_c_indices[0]]) * gv[lowered_c_indices[1]],
(lowered_c_indices[0],) + (lowered_c_indices[1],),
)
def test_remove_complex_nodes(self):
cell = triangle
element = LagrangeElement(cell, 1)
domain = Mesh(LagrangeElement(cell, 1, (2,)))
space = FunctionSpace(domain, element)
u = TrialFunction(space)
v = TestFunction(space)
f = Coefficient(space)
a = conj(v)
b = real(u)
c = imag(f)
d = conj(real(v)) * imag(conj(u))
assert remove_complex_nodes(a) == v
assert remove_complex_nodes(b) == u
with pytest.raises(BaseException):
remove_complex_nodes(c)
with pytest.raises(BaseException):
remove_complex_nodes(d)
def test_comparison_checker(self):
cell = triangle
element = LagrangeElement(cell, 1)
domain = Mesh(LagrangeElement(cell, 1, (2,)))
space = FunctionSpace(domain, element)
u = TrialFunction(space)
v = TestFunction(space)
a = conditional(ge(abs(u), imag(v)), u, v)
b = conditional(le(sqrt(abs(u)), imag(v)), as_ufl(1), as_ufl(1j))
c = conditional(gt(abs(u), pow(imag(v), 0.5)), sin(u), cos(v))
d = conditional(lt(as_ufl(-1), as_ufl(1)), u, v)
e = max_value(as_ufl(0), real(u))
f = min_value(sin(u), cos(v))
g = min_value(sin(pow(u, 3)), cos(abs(v)))
assert do_comparison_check(a) == conditional(ge(real(abs(u)), real(imag(v))), u, v)
with pytest.raises(ComplexComparisonError):
b = do_comparison_check(b)
with pytest.raises(ComplexComparisonError):
c = do_comparison_check(c)
assert do_comparison_check(d) == conditional(lt(real(as_ufl(-1)), real(as_ufl(1))), u, v)
assert do_comparison_check(e) == max_value(real(as_ufl(0)), real(real(u)))
assert do_comparison_check(f) == min_value(real(sin(u)), real(cos(v)))
assert do_comparison_check(g) == min_value(real(sin(pow(u, 3))), real(cos(abs(v))))
def test_complex_degree_handling(self):
cell = triangle
element = LagrangeElement(cell, 3)
domain = Mesh(LagrangeElement(cell, 1, (2,)))
space = FunctionSpace(domain, element)
v = TestFunction(space)
a = conj(v)
b = imag(v)
c = real(v)
assert estimate_total_polynomial_degree(a) == 3
assert estimate_total_polynomial_degree(b) == 3
assert estimate_total_polynomial_degree(c) == 3
|