1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
|
"""Test ExternalOperator object."""
__authors__ = "Nacime Bouziani"
__date__ = "2019-03-26"
import pytest
from utils import FiniteElement, LagrangeElement
from ufl import (
Action,
Argument,
Coargument,
Coefficient,
Constant,
Form,
FunctionSpace,
Matrix,
Mesh,
TestFunction,
TrialFunction,
action,
adjoint,
cos,
derivative,
dx,
inner,
replace,
sin,
triangle,
)
from ufl.algorithms import expand_derivatives
from ufl.algorithms.apply_derivatives import apply_derivatives
from ufl.core.external_operator import ExternalOperator
from ufl.form import BaseForm, ZeroBaseForm
from ufl.pullback import identity_pullback
from ufl.sobolevspace import H1
@pytest.fixture
def domain_2d():
return Mesh(LagrangeElement(triangle, 1, (2,)))
@pytest.fixture
def V1(domain_2d):
f1 = FiniteElement("CG", triangle, 1, (), identity_pullback, H1)
return FunctionSpace(domain_2d, f1)
@pytest.fixture
def V2(domain_2d):
f1 = FiniteElement("CG", triangle, 2, (), identity_pullback, H1)
return FunctionSpace(domain_2d, f1)
@pytest.fixture
def V3(domain_2d):
f1 = FiniteElement("CG", triangle, 3, (), identity_pullback, H1)
return FunctionSpace(domain_2d, f1)
def test_properties(V1):
u = Coefficient(V1, count=0)
r = Coefficient(V1, count=1)
e = ExternalOperator(u, r, function_space=V1)
assert e.ufl_function_space() == V1
assert e.ufl_operands[0] == u
assert e.ufl_operands[1] == r
assert e.derivatives == (0, 0)
assert e.ufl_shape == ()
e2 = ExternalOperator(u, r, function_space=V1, derivatives=(3, 4))
assert e2.derivatives == (3, 4)
assert e2.ufl_shape == ()
# Test __str__
s = Coefficient(V1, count=2)
t = Coefficient(V1, count=3)
v0 = Argument(V1, 0)
v1 = Argument(V1, 1)
e = ExternalOperator(u, function_space=V1)
assert str(e) == "e(w_0; v_0)"
e = ExternalOperator(u, function_space=V1, derivatives=(1,))
assert str(e) == "∂e(w_0; v_0)/∂o1"
e = ExternalOperator(
u, r, 2 * s, t, function_space=V1, derivatives=(1, 0, 1, 2), argument_slots=(v0, v1)
)
assert str(e) == "∂e(w_0, w_1, 2 * w_2, w_3; v_1, v_0)/∂o1∂o3∂o4∂o4"
def test_form(V1, V2):
u = Coefficient(V1)
m = Coefficient(V1)
u_hat = TrialFunction(V1)
v = TestFunction(V1)
# F = N * v * dx
N = ExternalOperator(u, m, function_space=V2)
F = N * v * dx
actual = derivative(F, u, u_hat)
(vstar,) = N.arguments()
Nhat = TrialFunction(N.ufl_function_space())
dNdu = N._ufl_expr_reconstruct_(u, m, derivatives=(1, 0), argument_slots=(vstar, u_hat))
dFdN = Nhat * v * dx
expected = Action(dFdN, dNdu)
assert apply_derivatives(actual) == expected
# F = N * u * v * dx
N = ExternalOperator(u, m, function_space=V1)
F = N * u * v * dx
actual = derivative(F, u, u_hat)
(vstar,) = N.arguments()
Nhat = TrialFunction(N.ufl_function_space())
dNdu = N._ufl_expr_reconstruct_(u, m, derivatives=(1, 0), argument_slots=(vstar, u_hat))
dFdu_partial = N * u_hat * v * dx
dFdN = Nhat * u * v * dx
expected = dFdu_partial + Action(dFdN, dNdu)
assert apply_derivatives(actual) == expected
def test_differentiation_procedure_action(V1, V2):
s = Coefficient(V1)
u = Coefficient(V2)
m = Coefficient(V2)
# External operators
N1 = ExternalOperator(u, m, function_space=V1)
N2 = ExternalOperator(cos(s), function_space=V1)
# Check arguments and argument slots
assert len(N1.arguments()) == 1
assert len(N2.arguments()) == 1
assert N1.arguments() == N1.argument_slots()
assert N2.arguments() == N2.argument_slots()
# Check coefficients
assert N1.coefficients() == (u, m)
assert N2.coefficients() == (s,)
# Get v*
(vstar_N1,) = N1.arguments()
(vstar_N2,) = N2.arguments()
assert vstar_N1.ufl_function_space().dual() == V1
assert vstar_N2.ufl_function_space().dual() == V1
u_hat = Argument(V1, 1)
s_hat = Argument(V2, 1)
w = Coefficient(V1)
r = Coefficient(V2)
# Bilinear forms
a1 = inner(N1, m) * dx
Ja1 = derivative(a1, u, u_hat)
Ja1 = expand_derivatives(Ja1)
a2 = inner(N2, m) * dx
Ja2 = derivative(a2, s, s_hat)
Ja2 = expand_derivatives(Ja2)
# Get external operators
assert isinstance(Ja1, Action)
dN1du = Ja1.right()
dN1du_action = Action(dN1du, w)
assert isinstance(Ja2, Action)
dN2du = Ja2.right()
dN2du_action = Action(dN2du, r)
# Check shape
assert dN1du.ufl_shape == ()
assert dN2du.ufl_shape == ()
# Get v*s
vstar_dN1du, _ = dN1du.arguments()
vstar_dN2du, _ = dN2du.arguments()
assert vstar_dN1du.ufl_function_space().dual() == V1 # shape: (2,)
assert vstar_dN2du.ufl_function_space().dual() == V1 # shape: (2,)
# Check derivatives
assert dN1du.derivatives == (1, 0)
assert dN2du.derivatives == (1,)
# Check arguments
assert dN1du.arguments() == (vstar_dN1du, u_hat)
assert dN1du_action.arguments() == (vstar_dN1du,)
assert dN2du.arguments() == (vstar_dN2du, s_hat)
assert dN2du_action.arguments() == (vstar_dN2du,)
# Check argument slots
assert dN1du.argument_slots() == (vstar_dN1du, u_hat)
assert dN2du.argument_slots() == (vstar_dN2du, -sin(s) * s_hat)
def test_extractions(domain_2d, V1):
from ufl.algorithms.analysis import (
extract_arguments,
extract_base_form_operators,
extract_coefficients,
extract_constants,
extract_terminals_with_domain,
)
u = Coefficient(V1)
c = Constant(domain_2d)
e = ExternalOperator(u, c, function_space=V1)
(vstar_e,) = e.arguments()
assert extract_coefficients(e) == [u]
assert extract_arguments(e) == [vstar_e]
assert extract_terminals_with_domain(e) == ([vstar_e], [u], [])
assert extract_constants(e) == [c]
assert extract_base_form_operators(e) == [e]
F = e * dx
assert extract_coefficients(F) == [u]
assert extract_arguments(e) == [vstar_e]
assert extract_terminals_with_domain(e) == ([vstar_e], [u], [])
assert extract_constants(F) == [c]
assert F.base_form_operators() == (e,)
u_hat = Argument(V1, 1)
e = ExternalOperator(u, function_space=V1, derivatives=(1,), argument_slots=(vstar_e, u_hat))
assert extract_coefficients(e) == [u]
assert extract_arguments(e) == [vstar_e, u_hat]
assert extract_terminals_with_domain(e) == ([vstar_e, u_hat], [u], [])
assert extract_base_form_operators(e) == [e]
F = e * dx
assert extract_coefficients(F) == [u]
assert extract_arguments(e) == [vstar_e, u_hat]
assert extract_terminals_with_domain(e) == ([vstar_e, u_hat], [u], [])
assert F.base_form_operators() == (e,)
w = Coefficient(V1)
e2 = ExternalOperator(w, e, function_space=V1)
(vstar_e2,) = e2.arguments()
assert extract_coefficients(e2) == [u, w]
assert extract_arguments(e2) == [vstar_e2, u_hat]
assert extract_terminals_with_domain(e2) == ([vstar_e2, u_hat], [u, w], [])
assert extract_base_form_operators(e2) == [e, e2]
F = e2 * dx
assert extract_coefficients(e2) == [u, w]
assert extract_arguments(e2) == [vstar_e2, u_hat]
assert extract_terminals_with_domain(e2) == ([vstar_e2, u_hat], [u, w], [])
assert F.base_form_operators() == (e, e2)
def get_external_operators(form_base):
if isinstance(form_base, ExternalOperator):
return (form_base,)
elif isinstance(form_base, BaseForm):
return form_base.base_form_operators()
else:
raise ValueError("Expecting BaseForm argument!")
def test_adjoint_action_jacobian(V1, V2, V3):
u = Coefficient(V1)
m = Coefficient(V2)
# N(u, m; v*)
N = ExternalOperator(u, m, function_space=V3)
# Arguments for the Gateaux-derivative
def u_hat(number):
return Argument(V1, number) # V1: degree 1 # dFdu.arguments()[-1]
def m_hat(number):
return Argument(V2, number) # V2: degree 2 # dFdm.arguments()[-1]
def vstar_N(number):
return Argument(V3.dual(), number) # V3: degree 3
# Coefficients for the action
w = Coefficient(V1) # for u
p = Coefficient(V2) # for m
v2 = TestFunction(V2)
v3 = TestFunction(V3)
form_base_expressions = (N * dx, N * v2 * dx, N * v3 * dx) # , N)
for F in form_base_expressions:
# Get test function
v_F = F.arguments() if isinstance(F, Form) else ()
# If we have a 0-form with an ExternalOperator: e.g. F = N * dx
# => F.arguments() = (), because of form composition.
# But we still need to make arguments with number 1 (i.e. n_arg = 1)
# since at the external operator level, argument numbering is based on
# the external operator arguments and not on the outer form arguments.
n_arg = len(v_F) if len(v_F) else 1
assert n_arg < 2
# Differentiate
dFdu = expand_derivatives(derivative(F, u, u_hat(n_arg)))
dFdm = expand_derivatives(derivative(F, m, m_hat(n_arg)))
assert dFdu.arguments() == v_F + (u_hat(n_arg),)
assert dFdm.arguments() == v_F + (m_hat(n_arg),)
assert isinstance(dFdu, Action)
# dNdu(u, m; u_hat, v*)
dNdu = dFdu.right()
# dNdm(u, m; m_hat, v*)
dNdm = dFdm.right()
assert dNdu.derivatives == (1, 0)
assert dNdm.derivatives == (0, 1)
assert dNdu.arguments() == (vstar_N(0), u_hat(n_arg))
assert dNdm.arguments() == (vstar_N(0), m_hat(n_arg))
assert dNdu.argument_slots() == dNdu.arguments()
assert dNdm.argument_slots() == dNdm.arguments()
# Action
action_dFdu = action(dFdu, w)
action_dFdm = action(dFdm, p)
assert action_dFdu.arguments() == v_F + ()
assert action_dFdm.arguments() == v_F + ()
# If we have 2 arguments
if len(v_F):
# Adjoint
dFdu_adj = adjoint(dFdu)
dFdm_adj = adjoint(dFdm)
V = v_F[0].ufl_function_space()
assert dFdu_adj.arguments() == (TestFunction(V1), TrialFunction(V))
assert dFdm_adj.arguments() == (TestFunction(V2), TrialFunction(V))
# Action of the adjoint
q = Coefficient(V)
action_dFdu_adj = action(dFdu_adj, q)
action_dFdm_adj = action(dFdm_adj, q)
assert action_dFdu_adj.arguments() == (TestFunction(V1),)
assert action_dFdm_adj.arguments() == (TestFunction(V2),)
def test_multiple_external_operators(V1, V2):
u = Coefficient(V1)
m = Coefficient(V1)
w = Coefficient(V2)
v = TestFunction(V1)
v_hat = TrialFunction(V1)
w_hat = TrialFunction(V2)
# N1(u, m; v*)
N1 = ExternalOperator(u, m, function_space=V1)
# N2(w; v*)
N2 = ExternalOperator(w, function_space=V2)
# N3(u; v*)
N3 = ExternalOperator(u, function_space=V1)
# N4(N1, u; v*)
N4 = ExternalOperator(N1, u, function_space=V1)
# N5(N4(N1, u); v*)
N5 = ExternalOperator(N4, u, function_space=V1)
# --- F = < N1(u, m; v*), v > + <N2(w; v*), v> + <N3(u; v*), v> --- #
F = (inner(N1, v) + inner(N2, v) + inner(N3, v)) * dx
# dFdu = Action(dFdN1, dN1du) + Action(dFdN3, dN3du)
dFdu = expand_derivatives(derivative(F, u))
dFdN1 = inner(v_hat, v) * dx
dFdN2 = inner(w_hat, v) * dx
dFdN3 = inner(v_hat, v) * dx
dN1du = N1._ufl_expr_reconstruct_(
u, m, derivatives=(1, 0), argument_slots=N1.arguments() + (v_hat,)
)
dN3du = N3._ufl_expr_reconstruct_(u, derivatives=(1,), argument_slots=N3.arguments() + (v_hat,))
assert dFdu == Action(dFdN1, dN1du) + Action(dFdN3, dN3du)
# dFdm = Action(dFdN1, dN1dm)
dFdm = expand_derivatives(derivative(F, m))
dN1dm = N1._ufl_expr_reconstruct_(
u, m, derivatives=(0, 1), argument_slots=N1.arguments() + (v_hat,)
)
assert dFdm == Action(dFdN1, dN1dm)
# dFdw = Action(dFdN2, dN2dw)
dFdw = expand_derivatives(derivative(F, w))
dN2dw = N2._ufl_expr_reconstruct_(w, derivatives=(1,), argument_slots=N2.arguments() + (w_hat,))
assert dFdw == Action(dFdN2, dN2dw)
# --- F = < N4(N1(u, m), u; v*), v > --- #
F = inner(N4, v) * dx
# dFdu = ∂F/∂u + Action(∂F/∂N1, dN1/du) + Action(∂F/∂N4, dN4/du)
# = Action(∂F/∂N4, dN4/du), since ∂F/∂u = 0 and ∂F/∂N1 = 0
#
# In addition, we have:
# dN4/du = ∂N4/∂u + Action(∂N4/∂N1, dN1/du)
#
# Using the fact that Action is distributive, we have:
#
# dFdu = Action(∂F/∂N4, ∂N4/∂u) +
# Action(∂F/∂N4, Action(∂N4/∂N1, dN1/du))
dFdu = expand_derivatives(derivative(F, u))
dFdN4_partial = inner(v_hat, v) * dx
dN4dN1_partial = N4._ufl_expr_reconstruct_(
N1, u, derivatives=(1, 0), argument_slots=N4.arguments() + (v_hat,)
)
dN4du_partial = N4._ufl_expr_reconstruct_(
N1, u, derivatives=(0, 1), argument_slots=N4.arguments() + (v_hat,)
)
assert dFdu == Action(dFdN4_partial, Action(dN4dN1_partial, dN1du)) + Action(
dFdN4_partial, dN4du_partial
)
# dFdm = Action(∂F/∂N4, Action(∂N4/∂N1, dN1/dm))
dFdm = expand_derivatives(derivative(F, m))
assert dFdm == Action(dFdN4_partial, Action(dN4dN1_partial, dN1dm))
# --- F = < N1(u, m; v*), v > + <N2(w; v*), v> + <N3(u; v*), v> + <
# N4(N1(u, m), u; v*), v > --- #
F = (inner(N1, v) + inner(N2, v) + inner(N3, v) + inner(N4, v)) * dx
dFdu = expand_derivatives(derivative(F, u))
assert dFdu == Action(dFdN1, dN1du) + Action(dFdN3, dN3du) + Action(
dFdN4_partial, Action(dN4dN1_partial, dN1du)
) + Action(dFdN4_partial, dN4du_partial)
dFdm = expand_derivatives(derivative(F, m))
assert dFdm == Action(dFdN1, dN1dm) + Action(dFdN4_partial, Action(dN4dN1_partial, dN1dm))
dFdw = expand_derivatives(derivative(F, w))
assert dFdw == Action(dFdN2, dN2dw)
# --- F = < N5(N4(N1(u, m), u), u; v*), v > + < N1(u, m; v*), v > +
# < u * N5(N4(N1(u, m), u), u; v*), v >--- #
F = (inner(N5, v) + inner(N1, v) + inner(u * N5, v)) * dx
# dFdu = ∂F/∂u + Action(∂F/∂N1, dN1/du) + Action(∂F/∂N4, dN4/du) + Action(∂F/∂N5, dN5/du)
#
# where:
# - ∂F/∂u = inner(w * N5, v) * dx
# - ∂F/∂N1 = inner(w, v) * dx
# - ∂F/∂N5 = inner(w, v) * dx + inner(u * w, v) * dx
# - ∂F/∂N4 = 0
# - dN5/du = ∂N5/∂u + Action(∂N5/∂N4, dN4/du)
# = ∂N5/∂u + Action(∂N5/∂N4, ∂N4/∂u) + Action(∂N5/∂N4, Action(∂N4/∂N1, dN1/du))
# with w = TrialFunction(V1)
w = TrialFunction(V1)
dFdu_partial = inner(w * N5, v) * dx
dFdN1_partial = inner(w, v) * dx
dFdN5_partial = (inner(w, v) + inner(u * w, v)) * dx
dN5dN4_partial = N5._ufl_expr_reconstruct_(
N4, u, derivatives=(1, 0), argument_slots=N4.arguments() + (w,)
)
dN5du_partial = N5._ufl_expr_reconstruct_(
N4, u, derivatives=(0, 1), argument_slots=N4.arguments() + (w,)
)
dN5du = (
Action(dN5dN4_partial, Action(dN4dN1_partial, dN1du))
+ Action(dN5dN4_partial, dN4du_partial)
+ dN5du_partial
)
dFdu = expand_derivatives(derivative(F, u))
assert dFdu == dFdu_partial + Action(dFdN1_partial, dN1du) + Action(dFdN5_partial, dN5du)
def test_replace(V1):
u = Coefficient(V1, count=0)
N = ExternalOperator(u, function_space=V1)
# dN(u; uhat, v*)
dN = expand_derivatives(derivative(N, u))
vstar, uhat = dN.arguments()
assert isinstance(vstar, Coargument)
# Replace v* by a Form
v = TestFunction(V1)
F = inner(u, v) * dx
G = replace(dN, {vstar: F})
dN_replaced = dN._ufl_expr_reconstruct_(u, argument_slots=(F, uhat))
assert G == dN_replaced
# Replace v* by an Action
M = Matrix(V1, V1)
A = Action(M, u)
G = replace(dN, {vstar: A})
dN_replaced = dN._ufl_expr_reconstruct_(u, argument_slots=(A, uhat))
assert G == dN_replaced
def test_ZeroDerivative(V1):
u = Coefficient(V1, count=1)
N = ExternalOperator(Coefficient(V1, count=0), function_space=V1)
dN1 = expand_derivatives(derivative(N, u))
assert isinstance(dN1, ZeroBaseForm)
|