File: test_form.py

package info (click to toggle)
fenics-ufl 2025.2.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,176 kB
  • sloc: python: 25,267; makefile: 170
file content (205 lines) | stat: -rwxr-xr-x 5,272 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import pytest
from utils import LagrangeElement

from ufl import (
    Coefficient,
    Cofunction,
    Form,
    FormSum,
    FunctionSpace,
    Mesh,
    SpatialCoordinate,
    TestFunction,
    TrialFunction,
    action,
    derivative,
    dot,
    ds,
    dx,
    grad,
    inner,
    nabla_grad,
    triangle,
)
from ufl.form import BaseForm


@pytest.fixture
def element():
    cell = triangle
    element = LagrangeElement(cell, 1)
    return element


@pytest.fixture
def domain():
    cell = triangle
    return Mesh(LagrangeElement(cell, 1, (2,)))


@pytest.fixture
def mass(domain):
    cell = triangle
    element = LagrangeElement(cell, 1)
    space = FunctionSpace(domain, element)
    v = TestFunction(space)
    u = TrialFunction(space)
    return u * v * dx


@pytest.fixture
def stiffness(domain):
    cell = triangle
    element = LagrangeElement(cell, 1)
    space = FunctionSpace(domain, element)
    v = TestFunction(space)
    u = TrialFunction(space)
    return inner(grad(u), grad(v)) * dx


@pytest.fixture
def convection(domain):
    cell = triangle
    element = LagrangeElement(cell, 1, (2,))
    space = FunctionSpace(domain, element)
    v = TestFunction(space)
    u = TrialFunction(space)
    w = Coefficient(space)
    return dot(dot(w, nabla_grad(u)), v) * dx


@pytest.fixture
def load(domain):
    cell = triangle
    element = LagrangeElement(cell, 1)
    space = FunctionSpace(domain, element)
    f = Coefficient(space)
    v = TestFunction(space)
    return f * v * dx


@pytest.fixture
def boundary_load(domain):
    cell = triangle
    element = LagrangeElement(cell, 1)
    space = FunctionSpace(domain, element)
    f = Coefficient(space)
    v = TestFunction(space)
    return f * v * ds


def test_form_arguments(mass, stiffness, convection, load):
    v, u = mass.arguments()
    (f,) = load.coefficients()

    assert v.number() == 0
    assert u.number() == 1
    assert stiffness.arguments() == (v, u)
    assert load.arguments() == (v,)

    assert (v * dx).arguments() == (v,)
    assert (v * dx + v * ds).arguments() == (v,)
    assert (v * dx + f * v * ds).arguments() == (v,)
    assert (u * v * dx(1) + v * u * dx(2)).arguments() == (v, u)
    assert ((f * v) * u * dx + (u * 3) * (v / 2) * dx(2)).arguments() == (v, u)


def test_form_coefficients(element, domain):
    space = FunctionSpace(domain, element)
    v = TestFunction(space)
    f = Coefficient(space)
    g = Coefficient(space)

    assert (g * dx).coefficients() == (g,)
    assert (g * dx + g * ds).coefficients() == (g,)
    assert (g * dx + f * ds).coefficients() == (f, g)
    assert (g * dx(1) + f * dx(2)).coefficients() == (f, g)
    assert (g * v * dx + f * v * dx(2)).coefficients() == (f, g)


def test_form_domains():
    cell = triangle
    element = LagrangeElement(cell, 1)
    domain = Mesh(LagrangeElement(cell, 1, (2,)))
    V = FunctionSpace(domain, element)

    v = TestFunction(V)
    f = Coefficient(V)
    x = SpatialCoordinate(domain)[0]

    assert (x * dx).ufl_domains() == (domain,)
    assert (v * dx).ufl_domains() == (domain,)
    assert (f * dx).ufl_domains() == (domain,)
    assert (x * v * f * dx).ufl_domains() == (domain,)
    assert (1 * dx(domain)).ufl_domains() == (domain,)


def test_form_empty(mass):
    assert not mass.empty()
    assert Form([]).empty()


def test_form_integrals(mass, boundary_load):
    assert isinstance(mass.integrals(), tuple)
    assert len(mass.integrals()) == 1
    assert mass.integrals()[0].integral_type() == "cell"
    assert mass.integrals_by_type("cell") == mass.integrals()
    assert mass.integrals_by_type("exterior_facet") == ()
    assert isinstance(boundary_load.integrals_by_type("cell"), tuple)
    assert len(boundary_load.integrals_by_type("cell")) == 0
    assert len(boundary_load.integrals_by_type("exterior_facet")) == 1


def test_form_call():
    element = LagrangeElement(triangle, 1)
    domain = Mesh(LagrangeElement(triangle, 1, (2,)))
    V = FunctionSpace(domain, element)
    v = TestFunction(V)
    u = TrialFunction(V)
    f = Coefficient(V)
    g = Coefficient(V)
    a = g * inner(grad(v), grad(u)) * dx
    M = a(f, f, coefficients={g: 1})
    assert M == grad(f) ** 2 * dx

    import sys

    if sys.version_info.major >= 3 and sys.version_info.minor >= 5:
        a = u * v * dx
        M = eval("(a @ f) @ g")
        assert M == g * f * dx


def test_formsum(mass):
    element = LagrangeElement(triangle, 1)
    domain = Mesh(LagrangeElement(triangle, 1, (2,)))
    V = FunctionSpace(domain, element)
    v = Cofunction(V.dual())
    u = Coefficient(V)

    assert v + mass
    assert mass + v
    assert isinstance((mass + v), FormSum)

    assert len((mass + v + v).components()) == 3
    # Variational forms are summed appropriately
    assert len((mass + v + mass).components()) == 2

    assert v - mass
    assert mass - v
    assert isinstance((mass + v), FormSum)

    assert -v
    assert isinstance(-v, BaseForm)
    assert (-v).weights()[0] == -1

    assert 2 * v
    assert isinstance(2 * v, BaseForm)
    assert (2 * v).weights()[0] == 2

    f = action(-v, u)
    df = derivative(9 * f, u)
    assert isinstance(f, FormSum)
    assert f.weights()[0] == -1
    assert isinstance(df, FormSum)
    assert df.weights()[0] == -9