File: test_simplify.py

package info (click to toggle)
fenics-ufl 2025.2.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,176 kB
  • sloc: python: 25,267; makefile: 170
file content (268 lines) | stat: -rwxr-xr-x 7,566 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import math

import pytest
from numpy import ndindex, reshape
from utils import LagrangeElement

from ufl import (
    Coefficient,
    FunctionSpace,
    Mesh,
    TestFunction,
    TrialFunction,
    VectorConstant,
    acos,
    as_tensor,
    as_ufl,
    asin,
    atan,
    cos,
    cosh,
    dx,
    exp,
    i,
    j,
    ln,
    max_value,
    min_value,
    outer,
    sin,
    sinh,
    tan,
    tanh,
    triangle,
)
from ufl.algorithms import compute_form_data
from ufl.constantvalue import Zero
from ufl.core.multiindex import FixedIndex, Index, MultiIndex, indices
from ufl.indexed import Indexed
from ufl.tensors import ComponentTensor, ListTensor


def xtest_zero_times_argument(self):
    # FIXME: Allow zero forms
    element = LagrangeElement(triangle, 1)
    domain = Mesh(LagrangeElement(triangle, 1, (2,)))
    space = FunctionSpace(domain, element)
    v = TestFunction(space)
    u = TrialFunction(space)
    L = 0 * v * dx
    a = 0 * (u * v) * dx
    b = (0 * u) * v * dx
    assert len(compute_form_data(L).arguments) == 1
    assert len(compute_form_data(a).arguments) == 2
    assert len(compute_form_data(b).arguments) == 2


def test_divisions(self):
    element = LagrangeElement(triangle, 1)
    domain = Mesh(LagrangeElement(triangle, 1, (2,)))
    space = FunctionSpace(domain, element)
    f = Coefficient(space)

    # Test simplification of division by 1
    a = f
    b = f / 1
    assert a == b

    # Test simplification of division by 1.0
    a = f
    b = f / 1.0
    assert a == b

    # Test simplification of division by of zero by something
    a = 0 / f
    b = 0 * f
    assert a == b

    # Test simplification of division by self (this simplification has been disabled)
    # a = f/f
    # b = 1
    # assert a == b


def test_products(self):
    element = LagrangeElement(triangle, 1)
    domain = Mesh(LagrangeElement(triangle, 1, (2,)))
    space = FunctionSpace(domain, element)
    f = Coefficient(space)
    g = Coefficient(space)

    # Test simplification of literal multiplication
    assert f * 0 == as_ufl(0)
    assert 0 * f == as_ufl(0)
    assert 1 * f == f
    assert f * 1 == f
    assert as_ufl(2) * as_ufl(3) == as_ufl(6)
    assert as_ufl(2.0) * as_ufl(3.0) == as_ufl(6.0)

    # Test reordering of operands
    assert f * g == g * f

    # Test simplification of self-multiplication (this simplification has been disabled)
    # assert f*f == f**2


def test_sums(self):
    element = LagrangeElement(triangle, 1)
    domain = Mesh(LagrangeElement(triangle, 1, (2,)))
    space = FunctionSpace(domain, element)
    f = Coefficient(space)
    g = Coefficient(space)

    # Test reordering of operands
    assert f + g == g + f

    # Test adding zero
    assert f + 0 == f
    assert 0 + f == f

    # Test collapsing of basic sum (this simplification has been disabled)
    # assert f + f == 2 * f

    # Test reordering of operands and collapsing sum
    a = f + g + f  # not collapsed, but ordered
    b = g + f + f  # not collapsed, but ordered
    c = (g + f) + f  # not collapsed, but ordered
    d = f + (f + g)  # not collapsed, but ordered
    assert a == b
    assert a == c
    assert a == d

    # Test reordering of operands and collapsing sum
    a = f + f + g  # collapsed
    b = g + (f + f)  # collapsed
    assert a == b


def test_mathfunctions(self):
    for a in (0.1, 0.3, 0.9):
        assert math.sin(a) == sin(a)
        assert math.cos(a) == cos(a)
        assert math.tan(a) == tan(a)
        assert math.sinh(a) == sinh(a)
        assert math.cosh(a) == cosh(a)
        assert math.tanh(a) == tanh(a)
        assert math.asin(a) == asin(a)
        assert math.acos(a) == acos(a)
        assert math.atan(a) == atan(a)
        assert math.exp(a) == exp(a)
        assert math.log(a) == ln(a)
        # TODO: Implement automatic simplification of conditionals?
        assert a == float(max_value(a, a - 1))
        # TODO: Implement automatic simplification of conditionals?
        assert a == float(min_value(a, a + 1))


def test_indexing(self):
    domain = Mesh(LagrangeElement(triangle, 1, (2,)))
    u = VectorConstant(domain)
    v = VectorConstant(domain)

    A = outer(u, v)
    A2 = as_tensor(A[i, j], (i, j))
    assert A2 == A

    Bij = u[i] * v[j]
    Bij2 = as_tensor(Bij, (i, j))[i, j]
    as_tensor(Bij, (i, j))
    assert Bij2 == Bij


@pytest.mark.parametrize("shape", [(3,), (3, 2)], ids=("vector", "matrix"))
def test_tensor_from_indexed(self, shape):
    element = LagrangeElement(triangle, 1, shape)
    domain = Mesh(LagrangeElement(triangle, 1, (2,)))
    space = FunctionSpace(domain, element)
    f = Coefficient(space)
    assert as_tensor(reshape([f[i] for i in ndindex(f.ufl_shape)], f.ufl_shape).tolist()) is f


def test_nested_indexed(self):
    # Test that a nested Indexed expression simplifies to the existing Indexed object
    shape = (2,)
    element = LagrangeElement(triangle, 1, shape)
    domain = Mesh(LagrangeElement(triangle, 1, (2,)))
    space = FunctionSpace(domain, element)
    f = Coefficient(space)

    comps = tuple(f[i] for i in range(2))
    assert all(isinstance(c, Indexed) for c in comps)
    expr = as_tensor(list(reversed(comps)))

    multiindex = MultiIndex((FixedIndex(0),))
    assert Indexed(expr, multiindex) is expr[0]
    assert Indexed(expr, multiindex) is comps[1]


def test_repeated_indexing(self):
    # Test that an Indexed with repeated indices does not contract indices
    shape = (2, 2)
    element = LagrangeElement(triangle, 1, shape)
    domain = Mesh(LagrangeElement(triangle, 1, (2,)))
    space = FunctionSpace(domain, element)
    x = Coefficient(space)
    C = as_tensor([x, x])

    fi = FixedIndex(0)
    i = Index()
    ii = MultiIndex((fi, i, i))
    expr = Indexed(C, ii)
    assert i.count() in expr.ufl_free_indices
    assert isinstance(expr, Indexed)
    B, jj = expr.ufl_operands
    assert B is x
    assert tuple(jj) == tuple(ii[1:])


def test_untangle_indexed_component_tensor(self):
    shape = (2, 2, 2, 2)
    element = LagrangeElement(triangle, 1, shape)
    domain = Mesh(LagrangeElement(triangle, 1, (2,)))
    space = FunctionSpace(domain, element)
    C = Coefficient(space)

    r = len(shape)
    kk = indices(r)

    # Untangle as_tensor(C[kk], kk) -> C
    B = as_tensor(Indexed(C, MultiIndex(kk)), kk)
    assert B is C

    # Untangle as_tensor(C[kk], jj)[ii] -> C[ll]
    jj = kk[2:]
    A = as_tensor(Indexed(C, MultiIndex(kk)), jj)
    assert A is not C

    ii = kk
    expr = Indexed(A, MultiIndex(ii))
    assert isinstance(expr, Indexed)
    B, ll = expr.ufl_operands
    assert B is C

    rep = dict(zip(jj, ii))
    expected = tuple(rep.get(k, k) for k in kk)
    assert tuple(ll) == expected


def test_simplify_indexed(self):
    element = LagrangeElement(triangle, 1, (3,))
    domain = Mesh(LagrangeElement(triangle, 1, (2,)))
    space = FunctionSpace(domain, element)
    u = Coefficient(space)
    z = Zero(())
    i = Index()
    j = Index()
    # ListTensor
    lt = ListTensor(z, z, u[1])
    assert Indexed(lt, MultiIndex((FixedIndex(2),))) == u[1]
    # ListTensor -- nested
    l0 = ListTensor(z, u[1], z)
    l1 = ListTensor(z, z, u[2])
    l2 = ListTensor(u[0], z, z)
    ll = ListTensor(l0, l1, l2)
    assert Indexed(ll, MultiIndex((FixedIndex(1), FixedIndex(2)))) == u[2]
    assert Indexed(ll, MultiIndex((FixedIndex(2), i))) == l2[i]
    # ComponentTensor + ListTensor
    c = ComponentTensor(Indexed(ll, MultiIndex((i, j))), MultiIndex((j, i)))
    assert Indexed(c, MultiIndex((FixedIndex(1), FixedIndex(2)))) == l2[1]