File: unitig.c

package info (click to toggle)
fermi-lite 0.1-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 652 kB
  • sloc: ansic: 5,157; makefile: 63; sh: 13
file content (455 lines) | stat: -rw-r--r-- 15,372 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
#include <assert.h>
#include <string.h>
#include <math.h>
#include "kvec.h"
#include "kstring.h"
#include "rld0.h"
#include "mag.h"
#include "internal.h"

/******************
 *** From fermi ***
 ******************/

typedef struct { size_t n, m; int32_t *a; } fm32s_v;
typedef struct { size_t n, m; rldintv_t *a; } rldintv_v;

static uint64_t utg_primes[] = { 123457, 234571, 345679, 456791, 567899, 0 };

#define fm6_comp(a) ((a) >= 1 && (a) <= 4? 5 - (a) : (a))
#define fm6_set_intv(e, c, ik) ((ik).x[0] = (e)->cnt[(int)(c)], (ik).x[2] = (e)->cnt[(int)(c)+1] - (e)->cnt[(int)(c)], (ik).x[1] = (e)->cnt[fm6_comp(c)], (ik).info = 0)

int rld_extend0(const rld_t *e, const rldintv_t *ik, rldintv_t *ok0, int is_back)
{ // FIXME: this can be accelerated a little by using rld_rank1a() when ik.x[2]==1
	uint64_t tk[6], tl[6];
	rld_rank2a(e, ik->x[!is_back], ik->x[!is_back] + ik->x[2], tk, tl);
	ok0->x[!is_back] = tk[0];
	ok0->x[is_back] = ik->x[is_back];
	ok0->x[2] = tl[0] - tk[0];
	return 0;
}

uint64_t fm6_retrieve(const rld_t *e, uint64_t x, kstring_t *s, rldintv_t *k2, int *contained)
{
	uint64_t k = x, ok[6];
	rldintv_t ok2[6];
	s->l = 0; *contained = 0;
	while (1) {
		int c = rld_rank1a(e, k + 1, ok);
		k = e->cnt[c] + ok[c] - 1;
		if (c == 0) break;
		if (s->l > 0) {
			if (k2->x[2] == 1) k2->x[0] = k;
			else {
				rld_extend(e, k2, ok2, 1);
				*k2 = ok2[c];
			}
		} else fm6_set_intv(e, c, *k2);
		kputc(c, s);
	}
	if (k2->x[2] != 1) {
		rld_extend(e, k2, ok2, 1);
		if (ok2[0].x[2] != k2->x[2]) *contained |= 1; // left contained
		*k2 = ok2[0];
	} else k2->x[0] = k;
	rld_extend(e, k2, ok2, 0);
	if (ok2[0].x[2] != k2->x[2]) *contained |= 2; // right contained
	*k2 = ok2[0];
	return k;
}

/*****************
 *** Main body ***
 *****************/

#define info_lt(a, b) ((a).info < (b).info)

#include "ksort.h"
KSORT_INIT(infocmp, rldintv_t, info_lt)

static inline void set_bit(uint64_t *bits, uint64_t x)
{
	uint64_t *p = bits + (x>>6);
	uint64_t z = 1LLU<<(x&0x3f);
	__sync_fetch_and_or(p, z);
}

static inline void set_bits(uint64_t *bits, const rldintv_t *p)
{
	uint64_t k;
	for (k = 0; k < p->x[2]; ++k) {
		set_bit(bits, p->x[0] + k);
		set_bit(bits, p->x[1] + k);
	}
}

static rldintv_t overlap_intv(const rld_t *e, int len, const uint8_t *seq, int min, int j, int at5, rldintv_v *p, int inc_sentinel)
{ // requirement: seq[j] matches the end of a read
	int c, depth, dir, end;
	rldintv_t ik, ok[6];
	p->n = 0;
	dir = at5? 1 : -1; // at5 is true iff we start from the 5'-end of a read
	end = at5? len : -1;
	c = seq[j];
	fm6_set_intv(e, c, ik);
	for (depth = 1, j += dir; j != end; j += dir, ++depth) {
		c = at5? fm6_comp(seq[j]) : seq[j];
		rld_extend(e, &ik, ok, !at5);
		if (!ok[c].x[2]) break; // cannot be extended
		if (depth >= min && ok[0].x[2]) {
			if (inc_sentinel) {
				ok[0].info = j - dir;
				kv_push(rldintv_t, *p, ok[0]);
			} else {
				ik.info = j - dir;
				kv_push(rldintv_t, *p, ik);
			}
		}
		ik = ok[c];
	}
	kv_reverse(rldintv_t, *p, 0); // reverse the array such that the smallest interval comes first
	return ik;
}

typedef struct {
	const rld_t *e;
	int min_match, min_merge_len;
	rldintv_v a[2], nei;
	fm32s_v cat;
	uint64_t *used, *bend;
	kstring_t str;
	uint64_t n, sum, sum2, unpaired;
} aux_t;

int fm6_is_contained(const rld_t *e, int min_match, const kstring_t *s, rldintv_t *intv, rldintv_v *ovlp)
{ // for s is a sequence in e, test if s is contained in other sequences in e; return intervals right overlapping with s
	rldintv_t ik, ok[6];
	int ret = 0;
	assert(s->l > min_match);
	ovlp->n = 0;
	ik = overlap_intv(e, s->l, (uint8_t*)s->s, min_match, s->l - 1, 0, ovlp, 0);
	rld_extend(e, &ik, ok, 1); assert(ok[0].x[2]);
	if (ik.x[2] != ok[0].x[2]) ret = -1; // the sequence is left contained
	ik = ok[0];
	rld_extend(e, &ik, ok, 0); assert(ok[0].x[2]);
	if (ik.x[2] != ok[0].x[2]) ret = -1; // the sequence is right contained
	*intv = ok[0];
	return ret;
}

int fm6_get_nei(const rld_t *e, int min_match, int beg, kstring_t *s, rldintv_v *nei, // input and output variables
				rldintv_v *prev, rldintv_v *curr, fm32s_v *cat,                        // temporary arrays
				uint64_t *used)                                                      // optional info
{
	int ori_l = s->l, j, i, c, rbeg, is_forked = 0;
	rldintv_v *swap;
	rldintv_t ok[6], ok0;

	curr->n = nei->n = cat->n = 0;
	if (prev->n == 0) { // when this routine is called for the seed, prev may filled by fm6_is_contained()
		overlap_intv(e, s->l - beg, (uint8_t*)s->s + beg, min_match, s->l - beg - 1, 0, prev, 0);
		if (prev->n == 0) return -1; // no overlap
		for (j = 0; j < prev->n; ++j) prev->a[j].info += beg;
	}
	kv_resize(int, *cat, prev->m);
	for (j = 0; j < prev->n; ++j) cat->a[j] = 0; // only one interval; all point to 0
	while (prev->n) {
		for (j = 0, curr->n = 0; j < prev->n; ++j) {
			rldintv_t *p = &prev->a[j];
			if (cat->a[j] < 0) continue;
			rld_extend(e, p, ok, 0); // forward extension
			if (ok[0].x[2] && ori_l != s->l) { // some (partial) reads end here
				rld_extend0(e, &ok[0], &ok0, 1); // backward extension to look for sentinels
				if (ok0.x[2]) { // the match is bounded by sentinels - a full-length match
					if (ok[0].x[2] == p->x[2] && p->x[2] == ok0.x[2]) { // never consider a read contained in another read
						int cat0 = cat->a[j]; // a category approximately corresponds to one neighbor, though not always
						assert(j == 0 || cat->a[j] > cat->a[j-1]); // otherwise not irreducible
						ok0.info = ori_l - (p->info&0xffffffffU);
						for (i = j; i < prev->n && cat->a[i] == cat0; ++i) cat->a[i] = -1; // mask out other intervals of the same cat
						kv_push(rldintv_t, *nei, ok0); // keep in the neighbor vector
						continue; // no need to go through for(c); do NOT set "used" as this neighbor may be rejected later
					} else if (used) set_bits(used, &ok0); // the read is contained in another read; mark it as used
				}
			} // ~if(ok[0].x[2])
			if (cat->a[j] < 0) continue; // no need to proceed if we have finished this path
			for (c = 1; c < 5; ++c) // collect extensible intervals
				if (ok[c].x[2]) {
					rld_extend0(e, &ok[c], &ok0, 1);
					if (ok0.x[2]) { // do not extend intervals whose left end is not bounded by a sentinel
						ok[c].info = (p->info&0xfffffff0ffffffffLLU) | (uint64_t)c<<32;
						kv_push(rldintv_t, *curr, ok[c]);
					}
				}
		} // ~for(j)
		if (curr->n) { // update category
			uint32_t last, cat0;
			kv_resize(int, *cat, curr->m);
			c = curr->a[0].info>>32&0xf;
			kputc(fm6_comp(c), s);
			ks_introsort(infocmp, curr->n, curr->a);
			last = curr->a[0].info >> 32;
			cat->a[0] = 0;
			curr->a[0].info &= 0xffffffff;
			for (j = 1, cat0 = 0; j < curr->n; ++j) { // this loop recalculate cat
				if (curr->a[j].info>>32 != last)
					last = curr->a[j].info>>32, cat0 = j;
				cat->a[j] = cat0;
				curr->a[j].info = (curr->a[j].info&0xffffffff) | (uint64_t)cat0<<36;
			}
			if (cat0 != 0) is_forked = 1;
		}
		swap = curr; curr = prev; prev = swap; // swap curr and prev
	} // ~while(prev->n)
	if (nei->n == 0) return -1; // no overlap
	rbeg = ori_l - (uint32_t)nei->a[0].info;
	if (nei->n == 1 && is_forked) { // this may happen if there are contained reads; fix this
		fm6_set_intv(e, 0, ok0);
		for (i = rbeg; i < ori_l; ++i) {
			rld_extend(e, &ok0, ok, 0);
			ok0 = ok[fm6_comp(s->s[i])];
		}
		for (i = ori_l; i < s->l; ++i) {
			int c0 = -1;
			rld_extend(e, &ok0, ok, 0);
			for (c = 1, j = 0; c < 5; ++c)
				if (ok[c].x[2] && ok[c].x[0] <= nei->a[0].x[0] && ok[c].x[0] + ok[c].x[2] >= nei->a[0].x[0] + nei->a[0].x[2])
					++j, c0 = c;
			if (j == 0 && ok[0].x[2]) break;
			assert(j == 1);
			s->s[i] = fm6_comp(c0);
			ok0 = ok[c0];
		}
		s->l = i; s->s[s->l] = 0;
	}
	if (nei->n > 1) s->l = ori_l, s->s[s->l] = 0;
	return rbeg;
}

static int try_right(aux_t *a, int beg, kstring_t *s)
{
	return fm6_get_nei(a->e, a->min_match, beg, s, &a->nei, &a->a[0], &a->a[1], &a->cat, a->used);
}

static int check_left_simple(aux_t *a, int beg, int rbeg, const kstring_t *s)
{
	rldintv_t ok[6];
	rldintv_v *prev = &a->a[0], *curr = &a->a[1], *swap;
	int i, j;

	overlap_intv(a->e, s->l, (uint8_t*)s->s, a->min_match, rbeg, 1, prev, 1);
	for (i = rbeg - 1; i >= beg; --i) {
		for (j = 0, curr->n = 0; j < prev->n; ++j) {
			rldintv_t *p = &prev->a[j];
			rld_extend(a->e, p, ok, 1);
			if (ok[0].x[2]) set_bits(a->used, &ok[0]); // some reads end here; they must be contained in a longer read
			if (ok[0].x[2] + ok[(int)s->s[i]].x[2] != p->x[2]) return -1; // potential backward bifurcation
			kv_push(rldintv_t, *curr, ok[(int)s->s[i]]);
		}
		swap = curr; curr = prev; prev = swap;
	} // ~for(i)
	return 0;
}

static int check_left(aux_t *a, int beg, int rbeg, const kstring_t *s)
{
	int i, ret;
	rldintv_t tmp;
	assert(a->nei.n == 1);
	ret = check_left_simple(a, beg, rbeg, s);
	if (ret == 0) return 0;
	// when ret<0, the back fork may be caused by a contained read. we have to do more to confirm this.
	tmp = a->nei.a[0]; // backup the neighbour as it will be overwritten by try_right()
	a->a[0].n = a->a[1].n = a->nei.n = 0;
	ks_resize(&a->str, s->l - rbeg + 1);
	for (i = s->l - 1, a->str.l = 0; i >= rbeg; --i)
		a->str.s[a->str.l++] = fm6_comp(s->s[i]);
	a->str.s[a->str.l] = 0;
	try_right(a, 0, &a->str);
	assert(a->nei.n >= 1);
	ret = a->nei.n > 1? -1 : 0;
	a->nei.n = 1; a->nei.a[0] = tmp; // recover the original neighbour
	return ret;
}

static int unitig_unidir(aux_t *a, kstring_t *s, kstring_t *cov, int beg0, uint64_t k0, uint64_t *end, int *is_loop)
{
	int i, beg = beg0, rbeg, ori_l = s->l, n_reads = 0;
	*is_loop = 0;
	while ((rbeg = try_right(a, beg, s)) >= 0) { // loop if there is at least one overlap
		uint64_t k;
		if (a->nei.n > 1) { // forward bifurcation
			set_bit(a->bend, *end);
			break;
		}
		if ((k = a->nei.a[0].x[0]) == *end) break; // a loop like b>>c>>a><a; keep the link but stop extension
		if (((a->bend[k>>6]>>(k&0x3f)&1) || check_left(a, beg, rbeg, s) < 0)) { // backward bifurcation
			set_bit(a->bend, k);
			break;
		}
		if (k == k0) { // a loop like a>>b>>c>>a
			*is_loop = 1;
			break;
		}
		if (a->nei.a[0].x[1] == *end) { // a loop like b>>c>>a>>a; cut the last link
			a->nei.n = 0;
			break;
		}
		if ((int)a->nei.a[0].info < a->min_merge_len) break; // the overlap is not long enough
		*end = a->nei.a[0].x[1];
		set_bits(a->used, &a->nei.a[0]); // successful extension
		++n_reads;
		if (cov->m < s->m) ks_resize(cov, s->m);
		cov->l = s->l; cov->s[cov->l] = 0;
		for (i = rbeg; i < ori_l; ++i) // update the coverage string
			if (cov->s[i] != '~') ++cov->s[i];
		for (i = ori_l; i < s->l; ++i) cov->s[i] = '"';
		beg = rbeg; ori_l = s->l; a->a[0].n = a->a[1].n = 0; // prepare for the next round of loop
	}
	cov->l = s->l = ori_l; s->s[ori_l] = cov->s[ori_l] = 0;
	return n_reads;
}

static void copy_nei(ku128_v *dst, const rldintv_v *src)
{
	int i;
	for (i = 0; i < src->n; ++i) {
		ku128_t z;
		z.x = src->a[i].x[0]; z.y = src->a[i].info;
		kv_push(ku128_t, *dst, z);
	}
}

static int unitig1(aux_t *a, int64_t seed, kstring_t *s, kstring_t *cov, uint64_t end[2], ku128_v nei[2], int *n_reads)
{
	rldintv_t intv0;
	int seed_len, ret, is_loop, contained;
	int64_t k;
	size_t i;

	*n_reads = nei[0].n = nei[1].n = 0;
	if (a->used[seed>>6]>>(seed&0x3f)&1) return -2; // used
	// retrieve the sequence pointed by seed
	k = fm6_retrieve(a->e, seed, s, &intv0, &contained);
	seq_reverse(s->l, (uint8_t*)s->s);
	seed_len = s->l;
	// check contained status
	if (intv0.x[2] > 1 && k != intv0.x[0]) return -3; // duplicated, but not the first
	set_bits(a->used, &intv0);
	if (contained) return -3; // contained
	// check length, containment and if used before
	if (s->l <= a->min_match) return -1; // too short
	ret = fm6_is_contained(a->e, a->min_match, s, &intv0, &a->a[0]);
	*n_reads = 1;
	// initialize the coverage string
	if (cov->m < s->m) ks_resize(cov, s->m);
	cov->l = s->l; cov->s[cov->l] = 0;
	for (i = 0; i < cov->l; ++i) cov->s[i] = '"';
	// left-wards extension
	end[0] = intv0.x[1]; end[1] = intv0.x[0];
	if (a->a[0].n) { // no need to extend to the right if there is no overlap
		*n_reads += unitig_unidir(a, s, cov, 0, intv0.x[0], &end[0], &is_loop);
		copy_nei(&nei[0], &a->nei);
		if (is_loop) {
			ku128_t z;
			z.x = end[0]; z.y = a->nei.a[0].info;
			kv_push(ku128_t, nei[1], z);
			return 0;
		}
	}
	// right-wards extension
	a->a[0].n = a->a[1].n = a->nei.n = 0;
	seq_revcomp6(s->l, (uint8_t*)s->s); // reverse complement for extension in the other direction
	seq_reverse(cov->l, (uint8_t*)cov->s); // reverse the coverage
	*n_reads += unitig_unidir(a, s, cov, s->l - seed_len, intv0.x[1], &end[1], &is_loop);
	copy_nei(&nei[1], &a->nei);
	return 0;
}

typedef struct {
	long max_l;
	aux_t a;
	kstring_t str, cov;
	magv_t z;
	magv_v v;
} thrdat_t;

typedef struct {
	uint64_t prime, *used, *bend, *visited;
	const rld_t *e;
	thrdat_t *d;
} worker_t;

static void worker(void *data, long _i, int tid)
{
	worker_t *w = (worker_t*)data;
	thrdat_t *d = &w->d[tid];
	uint64_t i = (w->prime * _i) % w->e->mcnt[1];
	if (unitig1(&d->a, i, &d->str, &d->cov, d->z.k, d->z.nei, &d->z.nsr) >= 0) { // then we keep the unitig
		uint64_t *p[2], x[2];
		magv_t *q;
		p[0] = w->visited + (d->z.k[0]>>6); x[0] = 1LLU<<(d->z.k[0]&0x3f);
		p[1] = w->visited + (d->z.k[1]>>6); x[1] = 1LLU<<(d->z.k[1]&0x3f);
		if ((__sync_fetch_and_or(p[0], x[0])&x[0]) || (__sync_fetch_and_or(p[1], x[1])&x[1])) return;
		d->z.len = d->str.l;
		if (d->max_l < d->str.m) {
			d->max_l = d->str.m;
			d->z.seq = realloc(d->z.seq, d->max_l);
			d->z.cov = realloc(d->z.cov, d->max_l);
		}
		memcpy(d->z.seq, d->str.s, d->z.len);
		memcpy(d->z.cov, d->cov.s, d->z.len + 1);
		kv_pushp(magv_t, d->v, &q);
		mag_v_copy_to_empty(q, &d->z);
	}
}

mag_t *fml_fmi2mag_core(const rld_t *e, int min_match, int min_merge_len, int n_threads)
{
	extern void kt_for(int n_threads, void (*func)(void*,long,int), void *data, long n);
	worker_t w;
	int j;
	mag_t *g;

	w.used    = (uint64_t*)calloc((e->mcnt[1] + 63)/64, 8);
	w.bend    = (uint64_t*)calloc((e->mcnt[1] + 63)/64, 8);
	w.visited = (uint64_t*)calloc((e->mcnt[1] + 63)/64, 8);
	w.e       = e;
	assert(e->mcnt[1] >= n_threads * 2);
	w.d = calloc(n_threads, sizeof(thrdat_t));
	w.prime = 0;
	for (j = 0; utg_primes[j] > 0; ++j)
		if (e->mcnt[1] % utg_primes[j] != 0) {
			w.prime = utg_primes[j];
			break;
		}
	assert(w.prime);
	for (j = 0; j < n_threads; ++j) {
		w.d[j].a.e = e; w.d[j].a.min_match = min_match; w.d[j].a.min_merge_len = min_merge_len;
		w.d[j].a.used = w.used; w.d[j].a.bend = w.bend;
	}
	kt_for(n_threads, worker, &w, e->mcnt[1]);
	g = (mag_t*)calloc(1, sizeof(mag_t));
	for (j = 0; j < n_threads; ++j) {
		kv_resize(magv_t, g->v, g->v.n + w.d[j].v.n);
		memcpy(g->v.a + g->v.n, w.d[j].v.a, w.d[j].v.n * sizeof(magv_t));
		g->v.n += w.d[j].v.n;
		free(w.d[j].v.a);
		free(w.d[j].a.a[0].a); free(w.d[j].a.a[1].a); free(w.d[j].a.nei.a); free(w.d[j].a.cat.a);
		free(w.d[j].z.nei[0].a); free(w.d[j].z.nei[1].a); free(w.d[j].z.seq); free(w.d[j].z.cov);
		free(w.d[j].a.str.s); free(w.d[j].str.s); free(w.d[j].cov.s);
	}
	free(w.d); free(w.used); free(w.bend); free(w.visited);

	mag_g_build_hash(g);
	mag_g_amend(g);
	g->rdist = mag_cal_rdist(g);
	return g;
}

mag_t *fml_fmi2mag(const fml_opt_t *opt, rld_t *e)
{
	mag_t *g;
	g = fml_fmi2mag_core(e, opt->min_asm_ovlp, opt->min_merge_len, opt->n_threads);
	rld_destroy(e);
	return g;
}