1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
|
*
* fftp.F
*
*
* This software was developed by the Thermal Modeling and Analysis
* Project(TMAP) of the National Oceanographic and Atmospheric
* Administration's (NOAA) Pacific Marine Environmental Lab(PMEL),
* hereafter referred to as NOAA/PMEL/TMAP.
*
* Access and use of this software shall impose the following
* obligations and understandings on the user. The user is granted the
* right, without any fee or cost, to use, copy, modify, alter, enhance
* and distribute this software, and any derivative works thereof, and
* its supporting documentation for any purpose whatsoever, provided
* that this entire notice appears in all copies of the software,
* derivative works and supporting documentation. Further, the user
* agrees to credit NOAA/PMEL/TMAP in any publications that result from
* the use of this software or in any product that includes this
* software. The names TMAP, NOAA and/or PMEL, however, may not be used
* in any advertising or publicity to endorse or promote any products
* or commercial entity unless specific written permission is obtained
* from NOAA/PMEL/TMAP. The user also understands that NOAA/PMEL/TMAP
* is not obligated to provide the user with any support, consulting,
* training or assistance of any kind with regard to the use, operation
* and performance of this software nor to provide the user with any
* updates, revisions, new versions or "bug fixes".
*
* THIS SOFTWARE IS PROVIDED BY NOAA/PMEL/TMAP "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NOAA/PMEL/TMAP BE LIABLE FOR ANY SPECIAL,
* INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
* RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
* CONTRACT, NEGLIGENCE OR OTHER TORTUOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE ACCESS, USE OR PERFORMANCE OF THIS SOFTWARE.
*
* Ansley Manke
* Dec 1998
*
* v5.50 *acm* 10/02 Simplify the error message for missing data when the
* input is a simple 1-D time series.
* V5.53 *acm* 6/03 Correct the frequency axis: why was there a factor of
* 1.001 in freqn = 1.001*yquist?
*
* This function computes fft phase spectrum for each time series. Result
* time axis is a custom axis in period 1./time The input variable must have
* the time axis specified explicitly in the function call e.g.
* LET sstp = fftp(ssttim[l=1:492])
* and the time axis must be regular.
* Note current limitations as of 1-Jan-2000
* - Will have a utility to get the length of the input time axis at the
* point when the custom freq axis is set up, to use in computing the
* length of the frequency axis. Currently need to specify explicitly,
* in the function call e.g. fftp(sst[l=1:400]).
* NOTE:
* IT IS GENERALLY ADVISABLE TO INCLUDE EXPLICIT LIMITS WHEN WORKING WITH
* FUNCTIONS THAT REPLACE AXES. FOR EXAMPLE, THE CONSIDER THE FUNCTION
* SORTL(v). THE EXPRESSION
* LIST/L=6:10 SORTL(v)
* IS NOT EQUIVALENT TO
* LIST SORTL(v[L=6:10])
* THE FORMER WILL LIST THE 6TH THROUGH 10TH SORTED INDICES FROM THE ENTIRE
* L RANGE OF VARIABLE V. THE LATTER WILL LIST ALL OF THE INDICES THAT
* RESULT FROM SORTING v[L=6:10].
*
*
* In this subroutine we provide information about
* the function. The user configurable information
* consists of the following:
*
* descr Text description of the function
*
* num_args Required number of arguments
*
* axis_inheritance Type of axis for the result
* ( CUSTOM, IMPLIED_BY_ARGS, NORMAL, ABSTRACT )
* CUSTOM - user defined axis
* IMPLIED_BY_ARGS - same axis as the incoming argument
* NORMAL - the result is normal to this axis
* ABSTRACT - an axis which only has index values
*
* piecemeal_ok For memory optimization:
* axes where calculation may be performed piecemeal
* ( YES, NO )
*
*
* For each argument we provide the following information:
*
* name Text name for an argument
*
* unit Text units for an argument
*
* desc Text description of an argument
*
* axis_influence Are this argument's axes the same as the result grid?
* ( YES, NO )
*
* axis_extend How much does Ferret need to extend arg limits relative to result
*
SUBROUTINE fftp_init(id)
INCLUDE 'ferret_cmn/EF_Util.cmn'
INTEGER id, arg
CHARACTER*110 arg_desc
* **********************************************************************
* USER CONFIGURABLE PORTION |
* |
* V
* V
CALL ef_set_desc(id, 'Computes fft phase' )
CALL ef_set_num_args(id, 1)
CALL ef_set_axis_inheritance(id, IMPLIED_BY_ARGS,
. IMPLIED_BY_ARGS, IMPLIED_BY_ARGS, CUSTOM)
CALL ef_set_piecemeal_ok(id, NO, NO, NO, NO)
CALL ef_set_num_work_arrays(id, 4)
arg = 1
CALL ef_set_arg_name(id, arg, 'A')
CALL ef_set_arg_unit(id, arg, ' ')
WRITE (arg_desc, 10)
10 FORMAT ('Variable with regular time axis. Specify time ',
. 'explicitly e.g. fftp(var[l=1,120])')
CALL ef_set_arg_desc(id, arg, arg_desc)
CALL ef_set_axis_influence(id, arg, YES, YES, YES, NO)
* ^
* |
* USER CONFIGURABLE PORTION |
***********************************************************************
RETURN
END
SUBROUTINE fftp_custom_axes(id)
INCLUDE 'ferret_cmn/EF_Util.cmn'
INTEGER id
* **********************************************************************
* USER CONFIGURABLE PORTION |
* |
*
*
* Use utility functions to get grid information about the
* argument; use this info to determine the custom axis lo/hi/del
INTEGER nfreq_lo_l, nfreq_hi_l
INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS),
. arg_incr(4,EF_MAX_ARGS)
INTEGER arg
INTEGER nfreq, nd
REAL*8 yquist, freq1, freqn
REAL f1, fn
CHARACTER outunits*32
REAL boxsize(1)
CHARACTER ax_name(4)*16, ax_units(4)*16
LOGICAL backward(4), modulo(4), regular(4)
arg = 1
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
CALL ef_get_axis_info(id, arg, ax_name, ax_units, backward,
. modulo, regular)
CALL ef_get_box_size(id, arg, T_AXIS, arg_lo_ss(T_AXIS,arg),
. arg_lo_ss(T_AXIS,arg), boxsize)
IF ( arg_hi_ss(T_AXIS,arg) - arg_lo_ss(T_AXIS,arg) .EQ. 0 ) THEN
nfreq_lo_l = 1
nfreq_hi_l = 2
ELSE
nfreq_lo_l = arg_lo_ss(T_AXIS,arg)
nfreq_hi_l = arg_hi_ss(T_AXIS,arg)
ENDIF
nd = abs(nfreq_hi_l - nfreq_lo_l) + 1
C The FFT code returns frequencies W(k) for k=1 to N/2, with N/2 rounded down
c nfreq = nd/2
c yquist = 1./(2.*boxsize(1)) ! Nyquist frequency
c
c freq1 = 1.* yquist/ float(nfreq)
c! freqn = 1.001*yquist ! WHY THE 1.001???
c freqn = yquist
c
cC Set label for the frequency axis CYC/units.
c
c outunits = 'CYC/' // ax_units(T_AXIS)
c
c CALL ef_set_custom_axis (id, T_AXIS, freq1, freqn, freq1,
c . outunits, NO)
C Use ef_set_freq_axis (if we could let freq1, freqn be double precision
C in the ef_set_custom_axis call, that would be equivalent.)
C
C Set label for the frequency axis CYC/units.
outunits = 'CYC/' // ax_units(T_AXIS)
CALL ef_set_freq_axis (id, T_AXIS, nd, boxsize(1), outunits, NO)
* ^
* |
* USER CONFIGURABLE PORTION |
* **********************************************************************
RETURN
END
*
* In this subroutine we provide information about the lo and hi
* limits associated with each abstract or custom axis. The user
* configurable information consists of the following:
*
* lo_ss lo subscript for an axis
*
* hi_ss hi subscript for an axis
*
SUBROUTINE fftp_result_limits(id)
INCLUDE 'ferret_cmn/EF_Util.cmn'
INCLUDE 'ferret_cmn/EF_mem_subsc.cmn'
INTEGER id
* **********************************************************************
* USER CONFIGURABLE PORTION |
* |
* V
INTEGER ntime, nfreq
INTEGER arg
INTEGER arg_lo_ss(4,EF_MAX_ARGS), arg_hi_ss(4,EF_MAX_ARGS),
. arg_incr(4,EF_MAX_ARGS)
* Use utility functions to get context information about the argument.
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
nfreq = 1
arg = 1
ntime = arg_hi_ss(T_AXIS,arg) - arg_lo_ss(T_AXIS,arg) + 1
C The FFT code returns frequencies W(k) for k=1 to N/2, with N/2 rounded down
nfreq = ntime/ 2
if (ntime .ne. nfreq*2) nfreq = (ntime+1)/2 ! see FFTPACK comments in rfftf
CALL ef_set_axis_limits(id, T_AXIS, 1, nfreq)
* ^
* |
* USER CONFIGURABLE PORTION |
* **********************************************************************
RETURN
END
*
* In this subroutine we request an amount of storage to be supplied
* by Ferret and passed as an additional argument.
*
SUBROUTINE fftp_work_size(id)
INCLUDE 'ferret_cmn/EF_Util.cmn'
INCLUDE 'ferret_cmn/EF_mem_subsc.cmn'
INTEGER id
* **********************************************************************
* USER CONFIGURABLE PORTION |
* |
*
* Set the work arrays, X/Y/Z/T dimensions
*
* ef_set_work_array_dims(id,array #,xlo,ylo,zlo,tlo,xhi,yhi,zhi,thi)
*
INTEGER mtdat, mtwork
INTEGER arg_lo_ss(4,1:EF_MAX_ARGS), arg_hi_ss(4,1:EF_MAX_ARGS),
. arg_incr(4,1:EF_MAX_ARGS)
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
mtdat = 1 + arg_hi_ss(T_AXIS,ARG1) - arg_lo_ss(T_AXIS,ARG1)
mtwork = 2.5* mtdat + 15
* a
CALL ef_set_work_array_dims (id, 1, 1, 1, 1, 1, mtdat, 1, 1, 1)
* b
CALL ef_set_work_array_dims (id, 2, 1, 1, 1, 1, mtdat, 1, 1, 1)
* wft
CALL ef_set_work_array_dims (id, 3, 1, 1, 1, 1, mtwork, 1, 1, 1)
* ts
CALL ef_set_work_array_dims (id, 4, 1, 1, 1, 1, mtdat, 1, 1, 1)
* ^
* |
* USER CONFIGURABLE PORTION |
* **********************************************************************
RETURN
END
*
* In this subroutine we compute the result
*
SUBROUTINE fftp_compute(id, arg_1, result, a, b, wft, ts)
INCLUDE 'ferret_cmn/EF_Util.cmn'
INCLUDE 'ferret_cmn/EF_mem_subsc.cmn'
INTEGER id, arg
REAL bad_flag(1:EF_MAX_ARGS), bad_flag_result
REAL arg_1(mem1lox:mem1hix, mem1loy:mem1hiy,
. mem1loz:mem1hiz, mem1lot:mem1hit)
REAL result(memreslox:memreshix, memresloy:memreshiy,
. memresloz:memreshiz, memreslot:memreshit)
* After initialization, the 'res_' arrays contain indexing information
* for the result axes. The 'arg_' arrays will contain the indexing
* information for each variable's axes.
INTEGER res_lo_ss(4), res_hi_ss(4), res_incr(4)
INTEGER arg_lo_ss(4,1:EF_MAX_ARGS), arg_hi_ss(4,1:EF_MAX_ARGS),
. arg_incr(4,1:EF_MAX_ARGS)
* **********************************************************************
* USER CONFIGURABLE PORTION |
* |
* V
CHARACTER ax_name(4)*16, ax_units(4)*16
LOGICAL backward(4), modulo(4), regular(4)
* Dimension work arrays
REAL a(wrk1lox:wrk1hix, wrk1loy:wrk1hiy,
. wrk1loz:wrk1hiz, wrk1lot:wrk1hit)
REAL b(wrk2lox:wrk2hix, wrk2loy:wrk2hiy,
. wrk2loz:wrk2hiz, wrk2lot:wrk2hit)
REAL wft(wrk3lox:wrk3hix, wrk3loy:wrk3hiy,
. wrk3loz:wrk3hiz, wrk3lot:wrk3hit)
REAL ts(wrk4lox:wrk4hix, wrk4loy:wrk4hiy,
. wrk4loz:wrk4hiz, wrk4lot:wrk4hit)
REAL aa, bb, rad
INTEGER nd, nf
INTEGER i,j,k,l
INTEGER i1, j1, k1, l1
CHARACTER*80 err_msg
40 FORMAT ('FFTP encountered missing data at (i,j,k,l)', 4I5)
50 FORMAT ('FFTA encountered missing data at L=', I5)
rad = 180.0/ 3.141592654
CALL ef_get_res_subscripts(id, res_lo_ss, res_hi_ss, res_incr)
CALL ef_get_arg_subscripts(id, arg_lo_ss, arg_hi_ss, arg_incr)
CALL ef_get_bad_flags(id, bad_flag, bad_flag_result)
* number of time points.
arg = 1
nd = (arg_hi_ss(T_AXIS,arg) - arg_lo_ss(T_AXIS,arg) + 1)
nf = nd/ 2
* Check that the time axis is regular.
CALL ef_get_axis_info (id, 1, ax_name, ax_units, backward,
. modulo, regular)
IF (.NOT. regular(T_AXIS)) THEN
WRITE (err_msg, *) 'Time axis must be a regular axis'
GO TO 999
ENDIF
* Set WFT for fft; prime factorization of ND and trig functions.
CALL rffti (nd, wft)
i1 = arg_lo_ss(X_AXIS,ARG1)
DO 400 i=res_lo_ss(X_AXIS), res_hi_ss(X_AXIS)
j1 = arg_lo_ss(Y_AXIS,ARG1)
DO 300 j=res_lo_ss(Y_AXIS), res_hi_ss(Y_AXIS)
k1 = arg_lo_ss(Z_AXIS,ARG1)
DO 200 k=res_lo_ss(Z_AXIS), res_hi_ss(Z_AXIS)
* Calculate the FFT for each time series which have no missing data.
* Make a simple message if we have a 1-D input time series.
l1 =arg_lo_ss(T_AXIS,ARG1)
DO 100 l = 1, nd
IF (arg_1(i1,j1,k1,l1) .EQ. bad_flag(ARG1)) THEN
WRITE (err_msg, 40) i1,j1,k1,l
IF (i1 .EQ. ef_unspecified_int4 .AND.
. j1 .EQ. ef_unspecified_int4 .AND.
. k1 .EQ. ef_unspecified_int4 )
. WRITE (err_msg, 50) l
GO TO 999
ENDIF
ts(l,1,1,1) = arg_1(i1,j1,k1,l1)
l1 = l1 + arg_incr(T_AXIS,ARG1)
100 CONTINUE
l1 = arg_lo_ss(T_AXIS,ARG1)
l = res_lo_ss(T_AXIS)
CALL four_re (nd, ts, a, b, wft)
DO 110 l = res_lo_ss(T_AXIS), res_hi_ss(T_AXIS)
aa = a(l,1,1,1)
bb = b(l,1,1,1)
result(i,j,k,l) = rad* ATAN2(-1.*bb, aa)
110 CONTINUE
k1 = k1 + arg_incr(Z_AXIS,ARG1)
200 CONTINUE
j1 = j1 + arg_incr(Y_AXIS,ARG1)
300 CONTINUE
i1 = i1 + arg_incr(X_AXIS,ARG1)
400 CONTINUE
RETURN
999 CALL ef_bail_out (id, err_msg)
* ^
* |
* USER CONFIGURABLE PORTION |
* **********************************************************************
RETURN
END
|