1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
|
* fftsubs.F
*
* This software was developed by the Thermal Modeling and Analysis
* Project(TMAP) of the National Oceanographic and Atmospheric
* Administration's (NOAA) Pacific Marine Environmental Lab(PMEL),
* hereafter referred to as NOAA/PMEL/TMAP.
*
* Access and use of this software shall impose the following
* obligations and understandings on the user. The user is granted the
* right, without any fee or cost, to use, copy, modify, alter, enhance
* and distribute this software, and any derivative works thereof, and
* its supporting documentation for any purpose whatsoever, provided
* that this entire notice appears in all copies of the software,
* derivative works and supporting documentation. Further, the user
* agrees to credit NOAA/PMEL/TMAP in any publications that result from
* the use of this software or in any product that includes this
* software. The names TMAP, NOAA and/or PMEL, however, may not be used
* in any advertising or publicity to endorse or promote any products
* or commercial entity unless specific written permission is obtained
* from NOAA/PMEL/TMAP. The user also understands that NOAA/PMEL/TMAP
* is not obligated to provide the user with any support, consulting,
* training or assistance of any kind with regard to the use, operation
* and performance of this software nor to provide the user with any
* updates, revisions, new versions or "bug fixes".
*
* THIS SOFTWARE IS PROVIDED BY NOAA/PMEL/TMAP "AS IS" AND ANY EXPRESS
* OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NOAA/PMEL/TMAP BE LIABLE FOR ANY SPECIAL,
* INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
* RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
* CONTRACT, NEGLIGENCE OR OTHER TORTUOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE ACCESS, USE OR PERFORMANCE OF THIS SOFTWARE.
*
* computation routines for FFT functions
SUBROUTINE four_re (nd, x, a, b, wft)
INTEGER nd, nf, i, j
REAL x(*), wft(*)
REAL a(*), b(*), xn
c uses NCAR FFTPACK code
C Ansley Manke 1/2000 NOAA/PMEL Return A, B real arrays with Fourier coefficients.
C Uses notes by Ned Cokelet 1/2000 on Swartztrauber FFTPACK code.
c Calls: RFFTF
C NF = number of frequencies, half the number of times.
C The code returns frequencies W(i) for i=0 to ND/2, with ND/2 rounded down.
C We do not return a(0) = R1/ND
C We return a(i) and b(i) for i=1,... ND/2
nf = nd/ 2
CALL rfftf (nd, x, wft)
C Normalizing factor of 1./N
c xn = 1.0
xn = 1.0/ REAL(nd)
c Save FFT coefficients in arrays a and b.
j = 0
DO i = 1, nf-1
j = 2* i
a(i) = 2.* xn* x(j)
b(i) = -2.* xn* x(j+1)
ENDDO
C Set a(nf) and b(nf) when nd is even/odd.
IF (nf*2 .eq. nd) THEN ! even ND
a(nf) = xn* x(nd)
b(nf) = 0.
ELSE ! odd ND
a(nf) = 2.* xn* x(nd-1)
b(nf) = -2.* xn* x(nd)
ENDIF
RETURN
END
C SUBROUTINE RFFTF(N,R,WSAVE)
C
C SUBROUTINE RFFTF COMPUTES THE FOURIER COEFFICIENTS OF A REAL
C PERODIC SEQUENCE (FOURIER ANALYSIS). THE TRANSFORM IS DEFINED
C BELOW AT OUTPUT PARAMETER R.
C
C INPUT PARAMETERS
C
C N THE LENGTH OF THE ARRAY R TO BE TRANSFORMED. THE METHOD
C IS MOST EFFICIENT WHEN N IS A PRODUCT OF SMALL PRIMES.
C N MAY CHANGE SO LONG AS DIFFERENT WORK ARRAYS ARE PROVIDED
C
C R A REAL ARRAY OF LENGTH N WHICH CONTAINS THE SEQUENCE
C TO BE TRANSFORMED
C
C WSAVE A WORK ARRAY WHICH MUST BE DIMENSIONED AT LEAST 2*N+15.
C IN THE PROGRAM THAT CALLS RFFTF. THE WSAVE ARRAY MUST BE
C INITIALIZED BY CALLING SUBROUTINE RFFTI(N,WSAVE) AND A
C DIFFERENT WSAVE ARRAY MUST BE USED FOR EACH DIFFERENT
C VALUE OF N. THIS INITIALIZATION DOES NOT HAVE TO BE
C REPEATED SO LONG AS N REMAINS UNCHANGED THUS SUBSEQUENT
C TRANSFORMS CAN BE OBTAINED FASTER THAN THE FIRST.
C THE SAME WSAVE ARRAY CAN BE USED BY RFFTF AND RFFTB.
C
C
C OUTPUT PARAMETERS
C
C R R(1) = THE SUM FROM I=1 TO I=N OF R(I)
C
C IF N IS EVEN SET L =N/2 , IF N IS ODD SET L = (N+1)/2
C
C THEN FOR K = 2,...,L
C
C R(2*K-2) = THE SUM FROM I = 1 TO I = N OF
C
C R(I)*COS((K-1)*(I-1)*2*PI/N)
C
C R(2*K-1) = THE SUM FROM I = 1 TO I = N OF
C
C -R(I)*SIN((K-1)*(I-1)*2*PI/N)
C
C IF N IS EVEN
C
C R(N) = THE SUM FROM I = 1 TO I = N OF
C
C (-1)**(I-1)*R(I)
C
C ***** NOTE
C THIS TRANSFORM IS UNNORMALIZED SINCE A CALL OF RFFTF
C FOLLOWED BY A CALL OF RFFTB WILL MULTIPLY THE INPUT
C SEQUENCE BY N.
C
C WSAVE CONTAINS RESULTS WHICH MUST NOT BE DESTROYED BETWEEN
C CALLS OF RFFTF OR RFFTB.
C
SUBROUTINE RFFTF (N,R,WSAVE)
INTEGER N
REAL R(*) ,WSAVE(*)
C
IF (N .EQ. 1) RETURN
CALL RFFTF1 (N,R,WSAVE,WSAVE(N+1),WSAVE(2*N+1))
RETURN
END
SUBROUTINE RFFTF1 (N,C,CH,WA,IFAC)
INTEGER N, NF, NA, L2, IW, K1, KH, IP, L1, IDO, IDL1, IX2, IX3
INTEGER I, IX4
REAL CH(*) ,C(*) ,WA(*) ,IFAC(*)
NF = IFAC(2)
NA = 1
L2 = N
IW = N
DO 111 K1=1,NF
KH = NF-K1
IP = IFAC(KH+3)
L1 = L2/IP
IDO = N/L2
IDL1 = IDO*L1
IW = IW-(IP-1)*IDO
NA = 1-NA
IF (IP .NE. 4) GO TO 102
IX2 = IW+IDO
IX3 = IX2+IDO
IF (NA .NE. 0) GO TO 101
CALL RADF4 (IDO,L1,C,CH,WA(IW),WA(IX2),WA(IX3))
GO TO 110
101 CALL RADF4 (IDO,L1,CH,C,WA(IW),WA(IX2),WA(IX3))
GO TO 110
102 IF (IP .NE. 2) GO TO 104
IF (NA .NE. 0) GO TO 103
CALL RADF2 (IDO,L1,C,CH,WA(IW))
GO TO 110
103 CALL RADF2 (IDO,L1,CH,C,WA(IW))
GO TO 110
104 IF (IP .NE. 3) GO TO 106
IX2 = IW+IDO
IF (NA .NE. 0) GO TO 105
CALL RADF3 (IDO,L1,C,CH,WA(IW),WA(IX2))
GO TO 110
105 CALL RADF3 (IDO,L1,CH,C,WA(IW),WA(IX2))
GO TO 110
106 IF (IP .NE. 5) GO TO 108
IX2 = IW+IDO
IX3 = IX2+IDO
IX4 = IX3+IDO
IF (NA .NE. 0) GO TO 107
CALL RADF5 (IDO,L1,C,CH,WA(IW),WA(IX2),WA(IX3),WA(IX4))
GO TO 110
107 CALL RADF5 (IDO,L1,CH,C,WA(IW),WA(IX2),WA(IX3),WA(IX4))
GO TO 110
108 IF (IDO .EQ. 1) NA = 1-NA
IF (NA .NE. 0) GO TO 109
CALL RADFG (IDO,IP,L1,IDL1,C,C,C,CH,CH,WA(IW))
NA = 1
GO TO 110
109 CALL RADFG (IDO,IP,L1,IDL1,CH,CH,CH,C,C,WA(IW))
NA = 0
110 L2 = L1
111 CONTINUE
IF (NA .EQ. 1) RETURN
DO 112 I=1,N
C(I) = CH(I)
112 CONTINUE
RETURN
END
C SUBROUTINE RFFTI(N,WSAVE)
C
C SUBROUTINE RFFTI INITIALIZES THE ARRAY WSAVE WHICH IS USED IN
C BOTH RFFTF AND RFFTB. THE PRIME FACTORIZATION OF N TOGETHER WITH
C A TABULATION OF THE TRIGONOMETRIC FUNCTIONS ARE COMPUTED AND
C STORED IN WSAVE.
C
C INPUT PARAMETER
C
C N THE LENGTH OF THE SEQUENCE TO BE TRANSFORMED.
C
C OUTPUT PARAMETER
C
C WSAVE A WORK ARRAY WHICH MUST BE DIMENSIONED AT LEAST 2*N+15.
C THE SAME WORK ARRAY CAN BE USED FOR BOTH RFFTF AND RFFTB
C AS LONG AS N REMAINS UNCHANGED. DIFFERENT WSAVE ARRAYS
C ARE REQUIRED FOR DIFFERENT VALUES OF N. THE CONTENTS OF
C WSAVE MUST NOT BE CHANGED BETWEEN CALLS OF RFFTF OR RFFTB.
C
SUBROUTINE RFFTI (N,WSAVE)
INTEGER N
REAL WSAVE(*)
C
IF (N .EQ. 1) RETURN
CALL RFFTI1 (N,WSAVE(N+1),WSAVE(2*N+1))
RETURN
END
SUBROUTINE RFFTI1 (N,WA,IFAC)
INTEGER N, NL, NF, J, NTRY, NR, NQ, IB, I, IS, L1, NFM1, K1
INTEGER IP, LD, IDO, IPM, II, L2
REAL WA(*) ,IFAC(*) ,NTRYH(4)
REAL TPI, ARGH, ARGLD, FI, ARG, DUM
REAL PIMACH
DATA NTRYH(1),NTRYH(2),NTRYH(3),NTRYH(4)/4,2,3,5/
NL = N
NF = 0
J = 0
101 J = J+1
IF (J-4) 102,102,103
102 NTRY = NTRYH(J)
GO TO 104
103 NTRY = NTRY+2
104 NQ = NL/NTRY
NR = NL-NTRY*NQ
IF (NR) 101,105,101
105 NF = NF+1
IFAC(NF+2) = NTRY
NL = NQ
IF (NTRY .NE. 2) GO TO 107
IF (NF .EQ. 1) GO TO 107
DO 106 I=2,NF
IB = NF-I+2
IFAC(IB+2) = IFAC(IB+1)
106 CONTINUE
IFAC(3) = 2
107 IF (NL .NE. 1) GO TO 104
IFAC(1) = N
IFAC(2) = NF
TPI = 2.0*PIMACH(DUM)
ARGH = TPI/FLOAT(N)
IS = 0
NFM1 = NF-1
L1 = 1
IF (NFM1 .EQ. 0) RETURN
DO 110 K1=1,NFM1
IP = IFAC(K1+2)
LD = 0
L2 = L1*IP
IDO = N/L2
IPM = IP-1
DO 109 J=1,IPM
LD = LD+L1
I = IS
ARGLD = FLOAT(LD)*ARGH
FI = 0.
DO 108 II=3,IDO,2
I = I+2
FI = FI+1.
ARG = FI*ARGLD
WA(I-1) = COS(ARG)
WA(I) = SIN(ARG)
108 CONTINUE
IS = IS+IDO
109 CONTINUE
L1 = L2
110 CONTINUE
RETURN
END
REAL FUNCTION PIMACH (DUM)
C PI=3.1415926535897932384626433832795028841971693993751058209749446
C
REAL DUM
PIMACH = 4.*ATAN(1.0)
RETURN
END
SUBROUTINE RADFG (IDO,IP,L1,IDL1,CC,C1,C2,CH,CH2,WA)
INTEGER IDO, IP, L1, IDL1, IPPH, IPP2, IDP2, NBD, IK, J, K, IS
INTEGER IDIJ, I, JC, L, LC, J2, IC
REAL CH(IDO,L1,IP) ,CC(IDO,IP,L1) ,
1 C1(IDO,L1,IP) ,C2(IDL1,IP),
2 CH2(IDL1,IP) ,WA(*)
REAL TPI, DUM, ARG, DCP, DSP, AR1, AI1, AR1H, DC2, DS2, AR2, AI2
REAL AR2H
REAL PIMACH
TPI = 2.0*PIMACH(DUM)
ARG = TPI/FLOAT(IP)
DCP = COS(ARG)
DSP = SIN(ARG)
IPPH = (IP+1)/2
IPP2 = IP+2
IDP2 = IDO+2
NBD = (IDO-1)/2
IF (IDO .EQ. 1) GO TO 119
DO 101 IK=1,IDL1
CH2(IK,1) = C2(IK,1)
101 CONTINUE
DO 103 J=2,IP
DO 102 K=1,L1
CH(1,K,J) = C1(1,K,J)
102 CONTINUE
103 CONTINUE
IF (NBD .GT. L1) GO TO 107
IS = -IDO
DO 106 J=2,IP
IS = IS+IDO
IDIJ = IS
DO 105 I=3,IDO,2
IDIJ = IDIJ+2
DO 104 K=1,L1
CH(I-1,K,J) = WA(IDIJ-1)*C1(I-1,K,J)+WA(IDIJ)*C1(I,K,J)
CH(I,K,J) = WA(IDIJ-1)*C1(I,K,J)-WA(IDIJ)*C1(I-1,K,J)
104 CONTINUE
105 CONTINUE
106 CONTINUE
GO TO 111
107 IS = -IDO
DO 110 J=2,IP
IS = IS+IDO
DO 109 K=1,L1
IDIJ = IS
DO 108 I=3,IDO,2
IDIJ = IDIJ+2
CH(I-1,K,J) = WA(IDIJ-1)*C1(I-1,K,J)+WA(IDIJ)*C1(I,K,J)
CH(I,K,J) = WA(IDIJ-1)*C1(I,K,J)-WA(IDIJ)*C1(I-1,K,J)
108 CONTINUE
109 CONTINUE
110 CONTINUE
111 IF (NBD .LT. L1) GO TO 115
DO 114 J=2,IPPH
JC = IPP2-J
DO 113 K=1,L1
DO 112 I=3,IDO,2
C1(I-1,K,J) = CH(I-1,K,J)+CH(I-1,K,JC)
C1(I-1,K,JC) = CH(I,K,J)-CH(I,K,JC)
C1(I,K,J) = CH(I,K,J)+CH(I,K,JC)
C1(I,K,JC) = CH(I-1,K,JC)-CH(I-1,K,J)
112 CONTINUE
113 CONTINUE
114 CONTINUE
GO TO 121
115 DO 118 J=2,IPPH
JC = IPP2-J
DO 117 I=3,IDO,2
DO 116 K=1,L1
C1(I-1,K,J) = CH(I-1,K,J)+CH(I-1,K,JC)
C1(I-1,K,JC) = CH(I,K,J)-CH(I,K,JC)
C1(I,K,J) = CH(I,K,J)+CH(I,K,JC)
C1(I,K,JC) = CH(I-1,K,JC)-CH(I-1,K,J)
116 CONTINUE
117 CONTINUE
118 CONTINUE
GO TO 121
119 DO 120 IK=1,IDL1
C2(IK,1) = CH2(IK,1)
120 CONTINUE
121 DO 123 J=2,IPPH
JC = IPP2-J
DO 122 K=1,L1
C1(1,K,J) = CH(1,K,J)+CH(1,K,JC)
C1(1,K,JC) = CH(1,K,JC)-CH(1,K,J)
122 CONTINUE
123 CONTINUE
C
AR1 = 1.
AI1 = 0.
DO 127 L=2,IPPH
LC = IPP2-L
AR1H = DCP*AR1-DSP*AI1
AI1 = DCP*AI1+DSP*AR1
AR1 = AR1H
DO 124 IK=1,IDL1
CH2(IK,L) = C2(IK,1)+AR1*C2(IK,2)
CH2(IK,LC) = AI1*C2(IK,IP)
124 CONTINUE
DC2 = AR1
DS2 = AI1
AR2 = AR1
AI2 = AI1
DO 126 J=3,IPPH
JC = IPP2-J
AR2H = DC2*AR2-DS2*AI2
AI2 = DC2*AI2+DS2*AR2
AR2 = AR2H
DO 125 IK=1,IDL1
CH2(IK,L) = CH2(IK,L)+AR2*C2(IK,J)
CH2(IK,LC) = CH2(IK,LC)+AI2*C2(IK,JC)
125 CONTINUE
126 CONTINUE
127 CONTINUE
DO 129 J=2,IPPH
DO 128 IK=1,IDL1
CH2(IK,1) = CH2(IK,1)+C2(IK,J)
128 CONTINUE
129 CONTINUE
C
IF (IDO .LT. L1) GO TO 132
DO 131 K=1,L1
DO 130 I=1,IDO
CC(I,1,K) = CH(I,K,1)
130 CONTINUE
131 CONTINUE
GO TO 135
132 DO 134 I=1,IDO
DO 133 K=1,L1
CC(I,1,K) = CH(I,K,1)
133 CONTINUE
134 CONTINUE
135 DO 137 J=2,IPPH
JC = IPP2-J
J2 = J+J
DO 136 K=1,L1
CC(IDO,J2-2,K) = CH(1,K,J)
CC(1,J2-1,K) = CH(1,K,JC)
136 CONTINUE
137 CONTINUE
IF (IDO .EQ. 1) RETURN
IF (NBD .LT. L1) GO TO 141
DO 140 J=2,IPPH
JC = IPP2-J
J2 = J+J
DO 139 K=1,L1
DO 138 I=3,IDO,2
IC = IDP2-I
CC(I-1,J2-1,K) = CH(I-1,K,J)+CH(I-1,K,JC)
CC(IC-1,J2-2,K) = CH(I-1,K,J)-CH(I-1,K,JC)
CC(I,J2-1,K) = CH(I,K,J)+CH(I,K,JC)
CC(IC,J2-2,K) = CH(I,K,JC)-CH(I,K,J)
138 CONTINUE
139 CONTINUE
140 CONTINUE
RETURN
141 DO 144 J=2,IPPH
JC = IPP2-J
J2 = J+J
DO 143 I=3,IDO,2
IC = IDP2-I
DO 142 K=1,L1
CC(I-1,J2-1,K) = CH(I-1,K,J)+CH(I-1,K,JC)
CC(IC-1,J2-2,K) = CH(I-1,K,J)-CH(I-1,K,JC)
CC(I,J2-1,K) = CH(I,K,J)+CH(I,K,JC)
CC(IC,J2-2,K) = CH(I,K,JC)-CH(I,K,J)
142 CONTINUE
143 CONTINUE
144 CONTINUE
RETURN
END
SUBROUTINE RADF5 (IDO,L1,CC,CH,WA1,WA2,WA3,WA4)
INTEGER IDO, L1, K, IDP2, I, IC
REAL CC(IDO,L1,5) ,CH(IDO,5,L1) ,
1 WA1(*) ,WA2(*) ,WA3(*) ,WA4(*)
REAL CR2, CR3, CR4, CR5, CI2, CI3, CI4, CI5
REAL TR2, TR3, TR4, TR5, TI2, TI3, TI4, TI5
REAL DR2, DR3, DR4, DR5, DI2, DI3, DI4, DI5
REAL TR11, TI11, TR12, TI12
DATA TR11,TI11,TR12,TI12 /.309016994374947,.951056516295154,
1-.809016994374947,.587785252292473/
DO 101 K=1,L1
CR2 = CC(1,K,5)+CC(1,K,2)
CI5 = CC(1,K,5)-CC(1,K,2)
CR3 = CC(1,K,4)+CC(1,K,3)
CI4 = CC(1,K,4)-CC(1,K,3)
CH(1,1,K) = CC(1,K,1)+CR2+CR3
CH(IDO,2,K) = CC(1,K,1)+TR11*CR2+TR12*CR3
CH(1,3,K) = TI11*CI5+TI12*CI4
CH(IDO,4,K) = CC(1,K,1)+TR12*CR2+TR11*CR3
CH(1,5,K) = TI12*CI5-TI11*CI4
101 CONTINUE
IF (IDO .EQ. 1) RETURN
IDP2 = IDO+2
DO 103 K=1,L1
DO 102 I=3,IDO,2
IC = IDP2-I
DR2 = WA1(I-2)*CC(I-1,K,2)+WA1(I-1)*CC(I,K,2)
DI2 = WA1(I-2)*CC(I,K,2)-WA1(I-1)*CC(I-1,K,2)
DR3 = WA2(I-2)*CC(I-1,K,3)+WA2(I-1)*CC(I,K,3)
DI3 = WA2(I-2)*CC(I,K,3)-WA2(I-1)*CC(I-1,K,3)
DR4 = WA3(I-2)*CC(I-1,K,4)+WA3(I-1)*CC(I,K,4)
DI4 = WA3(I-2)*CC(I,K,4)-WA3(I-1)*CC(I-1,K,4)
DR5 = WA4(I-2)*CC(I-1,K,5)+WA4(I-1)*CC(I,K,5)
DI5 = WA4(I-2)*CC(I,K,5)-WA4(I-1)*CC(I-1,K,5)
CR2 = DR2+DR5
CI5 = DR5-DR2
CR5 = DI2-DI5
CI2 = DI2+DI5
CR3 = DR3+DR4
CI4 = DR4-DR3
CR4 = DI3-DI4
CI3 = DI3+DI4
CH(I-1,1,K) = CC(I-1,K,1)+CR2+CR3
CH(I,1,K) = CC(I,K,1)+CI2+CI3
TR2 = CC(I-1,K,1)+TR11*CR2+TR12*CR3
TI2 = CC(I,K,1)+TR11*CI2+TR12*CI3
TR3 = CC(I-1,K,1)+TR12*CR2+TR11*CR3
TI3 = CC(I,K,1)+TR12*CI2+TR11*CI3
TR5 = TI11*CR5+TI12*CR4
TI5 = TI11*CI5+TI12*CI4
TR4 = TI12*CR5-TI11*CR4
TI4 = TI12*CI5-TI11*CI4
CH(I-1,3,K) = TR2+TR5
CH(IC-1,2,K) = TR2-TR5
CH(I,3,K) = TI2+TI5
CH(IC,2,K) = TI5-TI2
CH(I-1,5,K) = TR3+TR4
CH(IC-1,4,K) = TR3-TR4
CH(I,5,K) = TI3+TI4
CH(IC,4,K) = TI4-TI3
102 CONTINUE
103 CONTINUE
RETURN
END
SUBROUTINE RADF2 (IDO,L1,CC,CH,WA1)
INTEGER IDO, L1, K, IDP2, I, IC
REAL CH(IDO,2,L1) ,CC(IDO,L1,2) ,
1 WA1(*)
REAL TR2, TI2
DO 101 K=1,L1
CH(1,1,K) = CC(1,K,1)+CC(1,K,2)
CH(IDO,2,K) = CC(1,K,1)-CC(1,K,2)
101 CONTINUE
IF (IDO-2) 107,105,102
102 IDP2 = IDO+2
DO 104 K=1,L1
DO 103 I=3,IDO,2
IC = IDP2-I
TR2 = WA1(I-2)*CC(I-1,K,2)+WA1(I-1)*CC(I,K,2)
TI2 = WA1(I-2)*CC(I,K,2)-WA1(I-1)*CC(I-1,K,2)
CH(I,1,K) = CC(I,K,1)+TI2
CH(IC,2,K) = TI2-CC(I,K,1)
CH(I-1,1,K) = CC(I-1,K,1)+TR2
CH(IC-1,2,K) = CC(I-1,K,1)-TR2
103 CONTINUE
104 CONTINUE
IF (MOD(IDO,2) .EQ. 1) RETURN
105 DO 106 K=1,L1
CH(1,2,K) = -CC(IDO,K,2)
CH(IDO,1,K) = CC(IDO,K,1)
106 CONTINUE
107 RETURN
END
SUBROUTINE RADF3 (IDO,L1,CC,CH,WA1,WA2)
INTEGER IDO, L1, I, IC, K, IDP2
REAL CH(IDO,3,L1) ,CC(IDO,L1,3) ,
1 WA1(*) ,WA2(*)
REAL TAUR, TAUI, CR2, DR2, DI2, DR3, DI3, CI2, TR2, TI2, TR3, TI3
DATA TAUR,TAUI /-.5,.866025403784439/
DO 101 K=1,L1
CR2 = CC(1,K,2)+CC(1,K,3)
CH(1,1,K) = CC(1,K,1)+CR2
CH(1,3,K) = TAUI*(CC(1,K,3)-CC(1,K,2))
CH(IDO,2,K) = CC(1,K,1)+TAUR*CR2
101 CONTINUE
IF (IDO .EQ. 1) RETURN
IDP2 = IDO+2
DO 103 K=1,L1
DO 102 I=3,IDO,2
IC = IDP2-I
DR2 = WA1(I-2)*CC(I-1,K,2)+WA1(I-1)*CC(I,K,2)
DI2 = WA1(I-2)*CC(I,K,2)-WA1(I-1)*CC(I-1,K,2)
DR3 = WA2(I-2)*CC(I-1,K,3)+WA2(I-1)*CC(I,K,3)
DI3 = WA2(I-2)*CC(I,K,3)-WA2(I-1)*CC(I-1,K,3)
CR2 = DR2+DR3
CI2 = DI2+DI3
CH(I-1,1,K) = CC(I-1,K,1)+CR2
CH(I,1,K) = CC(I,K,1)+CI2
TR2 = CC(I-1,K,1)+TAUR*CR2
TI2 = CC(I,K,1)+TAUR*CI2
TR3 = TAUI*(DI2-DI3)
TI3 = TAUI*(DR3-DR2)
CH(I-1,3,K) = TR2+TR3
CH(IC-1,2,K) = TR2-TR3
CH(I,3,K) = TI2+TI3
CH(IC,2,K) = TI3-TI2
102 CONTINUE
103 CONTINUE
RETURN
END
SUBROUTINE RADF4 (IDO,L1,CC,CH,WA1,WA2,WA3)
INTEGER IDO, L1, K, IDP2, I, IC
REAL CC(IDO,L1,4) ,CH(IDO,4,L1) ,
1 WA1(*) ,WA2(*) ,WA3(*)
REAL HSQT2
REAL CR2, CR3, CR4, CI2, CI3, CI4
REAL TR1, TR2, TR3, TR4, TI1, TI2, TI3, TI4
DATA HSQT2 /.7071067811865475/
DO 101 K=1,L1
TR1 = CC(1,K,2)+CC(1,K,4)
TR2 = CC(1,K,1)+CC(1,K,3)
CH(1,1,K) = TR1+TR2
CH(IDO,4,K) = TR2-TR1
CH(IDO,2,K) = CC(1,K,1)-CC(1,K,3)
CH(1,3,K) = CC(1,K,4)-CC(1,K,2)
101 CONTINUE
IF (IDO-2) 107,105,102
102 IDP2 = IDO+2
DO 104 K=1,L1
DO 103 I=3,IDO,2
IC = IDP2-I
CR2 = WA1(I-2)*CC(I-1,K,2)+WA1(I-1)*CC(I,K,2)
CI2 = WA1(I-2)*CC(I,K,2)-WA1(I-1)*CC(I-1,K,2)
CR3 = WA2(I-2)*CC(I-1,K,3)+WA2(I-1)*CC(I,K,3)
CI3 = WA2(I-2)*CC(I,K,3)-WA2(I-1)*CC(I-1,K,3)
CR4 = WA3(I-2)*CC(I-1,K,4)+WA3(I-1)*CC(I,K,4)
CI4 = WA3(I-2)*CC(I,K,4)-WA3(I-1)*CC(I-1,K,4)
TR1 = CR2+CR4
TR4 = CR4-CR2
TI1 = CI2+CI4
TI4 = CI2-CI4
TI2 = CC(I,K,1)+CI3
TI3 = CC(I,K,1)-CI3
TR2 = CC(I-1,K,1)+CR3
TR3 = CC(I-1,K,1)-CR3
CH(I-1,1,K) = TR1+TR2
CH(IC-1,4,K) = TR2-TR1
CH(I,1,K) = TI1+TI2
CH(IC,4,K) = TI1-TI2
CH(I-1,3,K) = TI4+TR3
CH(IC-1,2,K) = TR3-TI4
CH(I,3,K) = TR4+TI3
CH(IC,2,K) = TR4-TI3
103 CONTINUE
104 CONTINUE
IF (MOD(IDO,2) .EQ. 1) RETURN
105 CONTINUE
DO 106 K=1,L1
TI1 = -HSQT2*(CC(IDO,K,2)+CC(IDO,K,4))
TR1 = HSQT2*(CC(IDO,K,2)-CC(IDO,K,4))
CH(IDO,1,K) = TR1+CC(IDO,K,1)
CH(IDO,3,K) = CC(IDO,K,1)-TR1
CH(1,2,K) = TI1-CC(IDO,K,3)
CH(1,4,K) = TI1+CC(IDO,K,3)
106 CONTINUE
107 RETURN
END
|