1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
\name{GevModelling}
\alias{GevModelling}
\alias{fGEVFIT}
\alias{fGEVFIT-class}
\alias{show,fGEVFIT-method}
\alias{gevSim}
\alias{gumbelSim}
\alias{gevFit}
\alias{gumbelFit}
\alias{plot.fGEVFIT}
\alias{summary.fGEVFIT}
\title{Generalized Extreme Value Modelling}
\description{
A collection and description functions to estimate
the parameters of the GEV distribution. To model
the GEV three types of approaches for parameter
estimation are provided: Maximum likelihood
estimation, probability weighted moment method,
and estimation by the MDA approach. MDA includes
functions for the Pickands, Einmal-Decker-deHaan,
and Hill estimators together with several plot
variants.
\cr
The GEV modelling functions are:
\tabular{ll}{
\code{gevSim} \tab generates data from the GEV distribution, \cr
\code{gumbelSim} \tab generates data from the Gumbel distribution, \cr
\code{gevFit} \tab fits data to the GEV distribution, \cr
\code{gumbelFit} \tab fits data to the Gumbel distribution, \cr
\code{print} \tab print method for a fitted GEV object, \cr
\code{plot} \tab plot method for a fitted GEV object, \cr
\code{summary} \tab summary method for a fitted GEV object, \cr
\code{gevrlevelPlot} \tab k-block return level with confidence intervals. }
}
\usage{
gevSim(model = list(xi = -0.25, mu = 0, beta = 1), n = 1000, seed = NULL)
gumbelSim(model = list(mu = 0, beta = 1), n = 1000, seed = NULL)
gevFit(x, block = 1, type = c("mle", "pwm"), title = NULL, description = NULL, \dots)
gumbelFit(x, block = 1, type = c("mle", "pwm"), title = NULL, description = NULL, \dots)
\S4method{show}{fGEVFIT}(object)
\method{plot}{fGEVFIT}(x, which = "ask", \dots)
\method{summary}{fGEVFIT}(object, doplot = TRUE, which = "all", \dots)
}
\arguments{
\item{block}{
block size.
}
\item{description}{
a character string which allows for a brief description.
}
\item{doplot}{
a logical. Should the results be plotted?
\cr
[shaparmPlot] - \cr
a vector of logicals of the same lengths as tails
defining for which tail depths plots should be created,
by default plots will be generated for a tail depth of 5
percent. By default \code{c(FALSE, FALSE, FALSE, FALSE,
TRUE, FALSE, FALSE, FALSE, FALSE, FALSE)}.
}
\item{model}{
[gevSim][gumbelSim] - \cr
a list with components \code{shape}, \code{location} and
\code{scale} giving the parameters of the GEV distribution.
By default the shape parameter has the value -0.25, the
location is zero and the scale is one.
To fit random deviates from a Gumbel distribution set
\code{shape=0}.
}
\item{n}{
[gevSim][gumbelSim] - \cr
number of generated data points, an integer value.
\cr
[rgev] - \cr
the number of observations.
}
\item{object}{
[summary][grlevelPlot] - \cr
a fitted object of class \code{"gevFit"}.
}
\item{seed}{
[gevSim] - \cr
an integer value to set the seed for the random number generator.
}
\item{title}{
[gevFit] - \cr
a character string which allows for a project title.
}
\item{type}{
a character string denoting the type of parameter estimation,
either by maximum likelihood estimation \code{"mle"}, the
default value, or by the probability weighted moment method
\code{"pwm"}.
}
\item{which}{
[plot][summary] - \cr
a vector of logicals, one for each plot, denoting which plot
should be displayed. Alternatively if \code{which="ask"} the
user will be interactively asked which of the plots should be
displayed. By default \code{which="all"}.
}
\item{x}{
[dgev][devd] - \cr
a numeric vector of quantiles.
\cr
[gevFit] - \cr
data vector. In the case of \code{method="mle"} the interpretation
depends on the value of block: if no block size is specified then
data are interpreted as block maxima; if block size is set, then data
are interpreted as raw data and block maxima are calculated.
\cr
[hillPlot][shaparmPlot] - \cr
the data from which to calculate the shape parameter, a
numeric vector.
\cr
[print][plot] - \cr
a fitted object of class \code{"gevFit"}.
}
\item{xi, mu, beta}{
[*gev] - \cr
\code{xi} is the shape parameter, \code{mu} the location parameter,
and \code{beta} is the scale parameter. The default values are
\code{xi=1}, \code{mu=0}, and \code{beta=1}. Note, if \code{xi=0}
the distribution is of type Gumbel.
}
\item{\dots}{
[gevFit] - \cr
control parameters optionally passed to the
optimization function. Parameters for the optimization
function are passed to components of the \code{control} argument of
\code{optim}.
\cr
[hillPlot] - \cr
other graphics parameters.
\cr
[plot][summary] - \cr
arguments passed to the plot function.
}
}
\value{
\code{gevSim}
\cr
returns a vector of data points from the simulated series.
\cr
\code{gevFit}
\cr
returns an object of class \code{gev} describing the fit.
\cr
\code{print.summary}
\cr
prints a report of the parameter fit.
\cr
\code{summary}
\cr
performs diagnostic analysis. The method provides two different
residual plots for assessing the fitted GEV model.
\cr
\code{gevrlevelPlot}
\cr
returns a vector containing the lower 95\% bound of the confidence
interval, the estimated return level and the upper 95\% bound.
\cr
\code{hillPlot}
\cr
displays a plot.
\cr
\code{shaparmPlot}
\cr
returns a list with one or two entries, depending on the
selection of the input variable \code{both.tails}. The two
entries \code{upper} and \code{lower} determine the position of
the tail. Each of the two variables is again a list with entries
\code{pickands}, \code{hill}, and \code{dehaan}. If one of the
three methods will be discarded the printout will display zeroes.
}
\details{
\bold{Parameter Estimation:}
\cr\cr
\code{gevFit} and \code{gumbelFit} estimate the parameters either
by the probability weighted moment method, \code{method="pwm"} or
by maximum log likelihood estimation \code{method="mle"}. The
summary method produces diagnostic plots for fitted GEV or Gumbel
models.
\cr
\bold{Methods:}
\cr\cr
\code{print.gev}, \code{plot.gev} and \code{summary.gev} are
print, plot, and summary methods for a fitted object of class
\code{gev}. Concerning the summary method, the data are
converted to unit exponentially distributed residuals under null
hypothesis that GEV fits. Two diagnostics for iid exponential data
are offered. The plot method provides two different residual plots
for assessing the fitted GEV model. Two diagnostics for
iid exponential data are offered.
\cr
\bold{Return Level Plot:}
\cr\cr
\code{gevrlevelPlot} calculates and plots the k-block return level
and 95\% confidence interval based on a GEV model for block maxima,
where \code{k} is specified by the user. The k-block return level
is that level exceeded once every \code{k} blocks, on average. The
GEV likelihood is reparameterized in terms of the unknown return
level and profile likelihood arguments are used to construct a
confidence interval.
\cr
\bold{Hill Plot:}
\cr\cr
The function \code{hillPlot} investigates the shape parameter and
plots the Hill estimate of the tail index of heavy-tailed data, or
of an associated quantile estimate. This plot is usually calculated
from the alpha perspective. For a generalized Pareto analysis of
heavy-tailed data using the \code{gpdFit} function, it helps to
plot the Hill estimates for \code{xi}.
\cr
\bold{Shape Parameter Plot:}
\cr\cr
The function \code{shaparmPlot} investigates the shape parameter and
plots for the upper and lower tails the shape parameter as a function
of the taildepth. Three approaches are considered, the \emph{Pickands}
estimator, the \emph{Hill} estimator, and the
\emph{Decker-Einmal-deHaan} estimator.
}
\note{
\bold{GEV Parameter Estimation:}
\cr\cr
If method \code{"mle"} is selected the parameter fitting in \code{gevFit}
is passed to the internal function \code{gev.mle} or \code{gumbel.mle}
depending on the value of \code{gumbel}, \code{FALSE} or \code{TRUE}.
On the other hand, if method \code{"pwm"} is selected the parameter
fitting in \code{gevFit} is passed to the internal function
\code{gev.pwm} or \code{gumbel.pwm} again depending on the value of
\code{gumbel}, \code{FALSE} or \code{TRUE}.
}
\references{
Coles S. (2001);
\emph{Introduction to Statistical Modelling of Extreme Values},
Springer.
Embrechts, P., Klueppelberg, C., Mikosch, T. (1997);
\emph{Modelling Extremal Events},
Springer.
}
\author{
Alec Stephenson for R's \code{evd} and \code{evir} package, and \cr
Diethelm Wuertz for this \R-port.
}
\examples{
## gevSim -
# Simulate GEV Data, use default length n=1000
x = gevSim(model = list(xi = 0.25, mu = 0 , beta = 1), n = 1000)
head(x)
## gumbelSim -
# Simulate GEV Data, use default length n=1000
x = gumbelSim(model = list(xi = 0.25, mu = 0 , beta = 1))
## gevFit -
# Fit GEV Data by Probability Weighted Moments:
fit = gevFit(x, type = "pwm")
print(fit)
## summary -
# Summarize Results:
par(mfcol = c(2, 2))
summary(fit)
}
\keyword{models}
|