1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
"Unit tests for FFC"
# Copyright (C) 2007-2009 Anders Logg
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Marie E. Rognes, 2010
#
# First added: 2007-02-06
# Last changed: 2009-02-24
import unittest
import sys
import numpy
import math
import os
import instant
from time import time
sys.path.append(os.path.join(os.pardir, os.pardir))
from ufl import *
from ffc.fiatinterface import create_element as create
from ffc import jit
interval = [(0,), (1,)]
triangle = [(0, 0), (1, 0), (0, 1)]
tetrahedron = [(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)]
num_points = 5
# FIXME: A hack that will make the test run on Ubuntu 4.11, which ships two
# FIXME: versions of SWIG. UFC automatically uses the swig2.0 binary, which
# FIXME: FFC also need to use
use_swig2_binary = instant.check_and_set_swig_binary("swig2.0")
def random_point(shape):
w = numpy.random.random(len(shape))
return sum([numpy.array(shape[i])*w[i] for i in range(len(shape))]) / sum(w)
class SpaceDimensionTests(unittest.TestCase):
def testContinuousLagrange(self):
"Test space dimensions of continuous Lagrange elements."
P1 = create(FiniteElement("Lagrange", "triangle", 1))
self.assertEqual(P1.space_dimension(), 3)
P2 = create(FiniteElement("Lagrange", "triangle", 2))
self.assertEqual(P2.space_dimension(), 6)
P3 = create(FiniteElement("Lagrange", "triangle", 3))
self.assertEqual(P3.space_dimension(), 10)
def testDiscontinuousLagrange(self):
"Test space dimensions of discontinuous Lagrange elements."
P0 = create(FiniteElement("DG", "triangle", 0))
self.assertEqual(P0.space_dimension(), 1)
P1 = create(FiniteElement("DG", "triangle", 1))
self.assertEqual(P1.space_dimension(), 3)
P2 = create(FiniteElement("DG", "triangle", 2))
self.assertEqual(P2.space_dimension(), 6)
P3 = create(FiniteElement("DG", "triangle", 3))
self.assertEqual(P3.space_dimension(), 10)
class FunctionValueTests(unittest.TestCase):
"""
These tests examine tabulate gives the correct answers for a the
supported (non-mixed) elements of polynomial degree less than or
equal to 3
"""
# FIXME: Add tests for NED and BDM/RT in 3D.
def _check_function_values(self, points, element, reference):
for x in points:
table = element.tabulate(0, (x,))
basis = table[table.keys()[0]]
for i in range(len(basis)):
if element.value_shape() == ():
self.assertAlmostEqual(basis[i], reference[i](x))
else:
for k in range(element.value_shape()[0]):
self.assertAlmostEqual(basis[i][k][0],
reference[i](x)[k])
def testContinuousLagrange1D(self):
"Test values of continuous Lagrange functions in 1D."
element = create(FiniteElement("Lagrange", "interval", 1))
reference = [lambda x: 1 - x[0],
lambda x: x[0]]
points = [random_point(interval) for i in range(num_points)]
self._check_function_values(points, element, reference)
def testContinuousLagrange2D(self):
"Test values of continuous Lagrange functions in 2D."
element = create(FiniteElement("Lagrange", "triangle", 1))
reference = [lambda x: 1 - x[0] - x[1],
lambda x: x[0],
lambda x: x[1]]
points = [random_point(triangle) for i in range(num_points)]
self._check_function_values(points, element, reference)
def testContinuousLagrange3D(self):
"Test values of continuous Lagrange functions in 3D."
element = create(FiniteElement("Lagrange", "tetrahedron", 1))
reference = [lambda x: 1 - x[0] - x[1] - x[2],
lambda x: x[0],
lambda x: x[1],
lambda x: x[2]]
points = [random_point(tetrahedron) for i in range(num_points)]
self._check_function_values(points, element, reference)
def testDiscontinuousLagrange1D(self):
"Test values of discontinuous Lagrange functions in 1D."
element = create(FiniteElement("DG", "interval", 1))
reference = [lambda x: 1 - x[0],
lambda x: x[0]]
points = [random_point(interval) for i in range(num_points)]
self._check_function_values(points, element, reference)
def testDiscontinuousLagrange2D(self):
"Test values of discontinuous Lagrange functions in 2D."
element = create(FiniteElement("DG", "triangle", 1))
reference = [lambda x: 1 - x[0] - x[1],
lambda x: x[0],
lambda x: x[1]]
points = [random_point(triangle) for i in range(num_points)]
self._check_function_values(points, element, reference)
def testDiscontinuousLagrange3D(self):
"Test values of discontinuous Lagrange functions in 3D."
element = create(FiniteElement("DG", "tetrahedron", 1))
reference = [lambda x: 1 - x[0] - x[1] - x[2],
lambda x: x[0],
lambda x: x[1],
lambda x: x[2]]
points = [random_point(tetrahedron) for i in range(num_points)]
self._check_function_values(points, element, reference)
def testBDM1_2D(self):
"Test values of BDM1."
element = create(FiniteElement("Brezzi-Douglas-Marini", "triangle", 1))
reference = [lambda x: (2*x[0], -x[1]),
lambda x: (-x[0], 2*x[1]),
lambda x: (2 - 2*x[0] - 3*x[1], x[1]),
lambda x: (- 1 + x[0] + 3*x[1], - 2*x[1]),
lambda x: (-x[0], -2 + 3*x[0] + 2*x[1]),
lambda x: (2*x[0], 1 - 3*x[0] - x[1])]
points = [random_point(triangle) for i in range(num_points)]
self._check_function_values(points, element, reference)
def testRT1_2D(self):
"Test values of RT1."
element = create(FiniteElement("Raviart-Thomas", "triangle", 1))
reference = [lambda x: (x[0], x[1]),
lambda x: (1 - x[0], -x[1]),
lambda x: (x[0], x[1] - 1)]
points = [random_point(triangle) for i in range(num_points)]
self._check_function_values(points, element, reference)
def testRT2_2D(self):
"Test values of RT2."
element = create(FiniteElement("Raviart-Thomas", "triangle", 2))
reference = [ lambda x: (-x[0] + 3*x[0]**2,
-x[1] + 3*x[0]*x[1]),
lambda x: (-x[0] + 3*x[0]*x[1],
-x[1] + 3*x[1]**2),
lambda x: ( 2 - 5*x[0] - 3*x[1] + 3*x[0]*x[1] + 3*x[0]**2,
-2*x[1] + 3*x[0]*x[1] + 3*x[1]**2),
lambda x: (-1.0 + x[0] + 3*x[1] - 3*x[0]*x[1],
x[1] - 3*x[1]**2),
lambda x: (2*x[0] - 3*x[0]*x[1] - 3*x[0]**2,
-2 + 3*x[0]+ 5*x[1] - 3*x[0]*x[1] - 3*x[1]**2),
lambda x: (- x[0] + 3*x[0]**2,
+ 1 - 3*x[0] - x[1] + 3*x[0]*x[1]),
lambda x: (6*x[0] - 3*x[0]*x[1] - 6*x[0]**2,
3*x[1] - 6*x[0]*x[1] - 3*x[1]**2),
lambda x: (3*x[0] - 6*x[0]*x[1] - 3*x[0]**2,
6*x[1]- 3*x[0]*x[1] - 6*x[1]**2),
]
points = [random_point(triangle) for i in range(num_points)]
self._check_function_values(points, element, reference)
def testNED1_2D(self):
"Test values of NED1."
element = create(FiniteElement("N1curl", "triangle", 1))
reference = [ lambda x: (-x[1], x[0]),
lambda x: ( x[1], 1 - x[0]),
lambda x: ( 1 - x[1], x[0]),
]
points = [random_point(triangle) for i in range(num_points)]
self._check_function_values(points, element, reference)
def testRT1_3D(self):
element = create(FiniteElement("RT", "tetrahedron", 1))
reference = [lambda x: (-x[0], -x[1], -x[2]),
lambda x: (-1.0 + x[0], x[1], x[2]),
lambda x: (-x[0], 1.0 - x[1], -x[2]),
lambda x: ( x[0], x[1], -1.0 + x[2])
]
points = [random_point(tetrahedron) for i in range(num_points)]
self._check_function_values(points, element, reference)
def testBDM1_3D(self):
element = create(FiniteElement("BDM", "tetrahedron", 1))
reference = [ lambda x: (-3*x[0], x[1], x[2]),
lambda x: (x[0], -3*x[1], x[2]),
lambda x: (x[0], x[1], -3*x[2]),
lambda x: (-3.0 + 3*x[0] + 4*x[1] + 4*x[2], -x[1], -x[2]),
lambda x: (1.0 - x[0] - 4*x[1], 3*x[1], -x[2]),
lambda x: (1.0 - x[0] - 4*x[2], -x[1], 3*x[2]),
lambda x: (x[0], 3.0 - 4*x[0] - 3*x[1] - 4*x[2], x[2]),
lambda x: (-3*x[0], -1.0 + 4*x[0] + x[1], x[2]),
lambda x: (x[0], -1.0 + x[1] + 4*x[2], -3*x[2]),
lambda x: (-x[0], -x[1], -3.0 + 4*x[0] + 4*x[1] + 3*x[2]),
lambda x: (3*x[0], -x[1], 1.0 - 4*x[0] - x[2]),
lambda x: (-x[0], 3*x[1], 1.0 - 4*x[1] - x[2])
]
points = [random_point(tetrahedron) for i in range(num_points)]
self._check_function_values(points, element, reference)
def testNED1_3D(self):
element = create(FiniteElement("N1curl", "tetrahedron", 1))
reference = [ lambda x: (0.0, -x[2], x[1]),
lambda x: (-x[2], 0.0, x[0]),
lambda x: (-x[1], x[0], 0.0),
lambda x: ( x[2], x[2], 1.0 - x[0] - x[1]),
lambda x: (x[1], 1.0 - x[0] - x[2], x[1]),
lambda x: (1.0 - x[1] - x[2], x[0], x[0])
]
points = [random_point(tetrahedron) for i in range(num_points)]
self._check_function_values(points, element, reference)
class JITTests(unittest.TestCase):
def testPoisson(self):
"Test that JIT compiler is fast enough."
# FIXME: Use local cache: cache_dir argument to instant.build_module
#options = {"log_level": INFO + 5}
#options = {"log_level": 5}
options = {"log_level": WARNING}
# FIXME: A hack to get the unit test pass on Ubuntu 11.04, see above.
if use_swig2_binary:
options["swig_binary"] = "swig2.0"
# Define two forms with the same signatures
element = FiniteElement("Lagrange", "triangle", 1)
v = TestFunction(element)
u = TrialFunction(element)
f = Coefficient(element)
g = Coefficient(element)
a0 = f*dot(grad(v), grad(u))*dx
a1 = g*dot(grad(v), grad(u))*dx
# Strange this needs to be done twice
# Compile a0 so it will be in the cache (both in-memory and disk)
jit(a0, options)
jit(a0, options)
# Compile a0 again (should be really fast, using in-memory cache)
t = time()
jit(a0, options)
dt0 = time() - t
print ""
# Compile a1 (should be fairly fast, using disk cache)
t = time()
jit(a1, options)
dt1 = time() - t
# Good values
dt0_good = 0.005
dt1_good = 0.01
print ""
print "JIT in-memory cache:", dt0
print "JIT disk cache: ", dt1
print "Reasonable values are %g and %g" % (dt0_good, dt1_good)
# Check times
self.assertTrue(dt0 < 10*dt0_good)
self.assertTrue(dt1 < 10*dt1_good)
if __name__ == "__main__":
unittest.main()
|