File: finite_element_bindings.cpp

package info (click to toggle)
ffc 2019.2.0~git20210115.cb26c91-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 8,144 kB
  • sloc: cpp: 45,285; python: 27,881; sh: 11,386; ansic: 1,069; makefile: 499
file content (410 lines) | stat: -rw-r--r-- 15,534 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
// Copyright (C) 2017 Garth N. Wells
//
// This file is part of FFC.
//
// FFC is free software: you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// FFC is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public License
// along with FFC. If not, see <http://www.gnu.org/licenses/>.

#include <iostream>
#include <memory>
#include <stdexcept>
#include <vector>
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>

#include <ufc.h>

namespace py = pybind11;

namespace ufc_wrappers
{
  void check_array_shape(py::array_t<double> x,
                         const std::vector<std::size_t> shape)
  {
    const py::buffer_info x_info = x.request();
    if ((std::size_t) x_info.ndim != shape.size())
      throw std::runtime_error("NumPy array has wrong number of dimensions");

    const auto& x_shape = x_info.shape;
    for (std::size_t i =0; i < shape.size();++i)
    {
      if ((std::size_t) x_shape[i] != shape[i])
        throw std::runtime_error("NumPy array has wrong size");
    }
  }

  // Interface function to
  // ufc::finite_element::evaluate_reference_basis
  py::array_t<double> evaluate_reference_basis(ufc::finite_element &instance,
                                               py::array_t<double> x)
  {
    // Dimensions
    const std::size_t num_dofs = instance.space_dimension();
    const std::size_t ref_size = instance.reference_value_size();
    const std::size_t tdim = instance.topological_dimension();

    // Extract point data
    const py::buffer_info x_info = x.request();
    const auto& x_shape = x_info.shape;
    const std::size_t num_points = x_shape[0];
    check_array_shape(x, {num_points, tdim});

    // Create object to hold data to be computed and returned
    py::array_t<double, py::array::c_style> f({num_points, num_dofs, ref_size});

    // Evaluate basis
    instance.evaluate_reference_basis(f.mutable_data(), num_points, x.data());

    return f;
  }

  py::array_t<double>
  evaluate_reference_basis_derivatives(const ufc::finite_element &instance,
                                       std::size_t order, py::array_t<double> x)
  {
    // Dimensions
    const std::size_t tdim = instance.topological_dimension();
    const std::size_t num_dofs = instance.space_dimension();
    const std::size_t ref_size = instance.reference_value_size();

    // Extract point data
    py::buffer_info x_info = x.request();
    const auto& x_shape = x_info.shape;
    const std::size_t num_points = x_shape[0];
    check_array_shape(x, {num_points, tdim});

    // Shape of data to be computed and returned, and create
    const std::size_t num_derivs = pow(tdim, order);
    py::array_t<double, py::array::c_style>
      f({num_points, num_dofs, num_derivs, ref_size});

    // Evaluate basis derivatives
    instance.evaluate_reference_basis_derivatives(f.mutable_data(), order,
                                                  num_points, x.data());

    return f;
  }

  py::array_t<double>
  transform_reference_basis_derivatives(ufc::finite_element &instance,
                                        std::size_t order,
                                        py::array_t<double> reference_values,
                                        py::array_t<double> X,
                                        py::array_t<double> J,
                                        py::array_t<double> detJ,
                                        py::array_t<double> K,
                                        int orientation)
  {
    // Dimensions
    const std::size_t gdim = instance.geometric_dimension();
    const std::size_t tdim = instance.topological_dimension();
    const std::size_t num_dofs = instance.space_dimension();
    const std::size_t ref_size = instance.reference_value_size();

    const std::size_t num_derivs = std::pow(tdim, order);

    // Extract reference value data (reference_values)
    py::buffer_info info_reference_values = reference_values.request();
    const auto& shape_reference_values = info_reference_values.shape;
    const std::size_t num_points = shape_reference_values[0];
    check_array_shape(reference_values, {num_points, num_dofs, num_derivs,
          ref_size});

    // Extract point data (X)
    py::buffer_info x_info = X.request();
    check_array_shape(X, {num_points, tdim});

    // Extract Jacobian data (J)
    py::buffer_info info_J = J.request();
    check_array_shape(J, {num_points, gdim, tdim});

    // Extract determinant of Jacobian data (detJ)
    py::buffer_info info_detJ = detJ.request();
    check_array_shape(detJ, {num_points});

    // Extract inverse of Jacobian data (K)
    py::buffer_info info_K = K.request();
    check_array_shape(K, {num_points, tdim, gdim});

    // Shape of data to be computed and returned, and create
    py::array_t<double, py::array::c_style>
      f({num_points, num_dofs, num_derivs, ref_size});

    // Evaluate basis derivatives
    instance.transform_reference_basis_derivatives(f.mutable_data(), order,
                                                   num_points,
                                                   reference_values.data(),
                                                   X.data(), J.data(),
                                                   detJ.data(), K.data(),
                                                   orientation);

    return f;
  }

  // Remove from UFC
  py::array_t<double> evaluate_basis(ufc::finite_element &instance,
                                     std::size_t i,
                                     py::array_t<double> x,
                                     py::array_t<double> coordinate_dofs,
                                     int cell_orientation)
  {
    // Dimensions
    const std::size_t gdim = instance.geometric_dimension();
    const std::size_t tdim = instance.topological_dimension();
    const std::size_t ref_size = instance.reference_value_size();

    // Extract point data (x)
    py::buffer_info info_x = x.request();
    check_array_shape(x, {gdim});

    // Extract coordinate data (coordinate_dofs)
    py::buffer_info info_coordinate_dofs = coordinate_dofs.request();

    // FIXME: this assumes an affine map
    check_array_shape(coordinate_dofs, {tdim + 1, gdim});

    // Shape of data to be computed and returned, and create
    py::array_t<double, py::array::c_style> values(ref_size);

    instance.evaluate_basis(i, values.mutable_data(), x.data(), coordinate_dofs.data(),
                            cell_orientation, nullptr);

    return values;
  }

  // Remove from UFC
  py::array_t<double> evaluate_basis_all(ufc::finite_element &instance,
                                         py::array_t<double> x,
                                         py::array_t<double> coordinate_dofs,
                                         int cell_orientation)
  {
    // Dimensions
    const std::size_t gdim = instance.geometric_dimension();
    const std::size_t tdim = instance.topological_dimension();
    const std::size_t num_dofs = instance.space_dimension();
    const std::size_t ref_size = instance.reference_value_size();

    // Extract point data (x)
    py::buffer_info info_x = x.request();
    check_array_shape(x, {gdim});

    // Extract reference value data (coordinate_dofs)
    py::buffer_info info_coordinate_dofs = coordinate_dofs.request();

    // FIXME: this assumes an affine map
    check_array_shape(coordinate_dofs, {tdim + 1, gdim});

    // Shape of data to be computed and returned, and create
    py::array_t<double, py::array::c_style> f({num_dofs, ref_size});

    // Call UFC function
    instance.evaluate_basis_all(f.mutable_data(), x.data(),
                                coordinate_dofs.data(),
                                cell_orientation, nullptr);

    return f;
  }

  // Remove from UFC
  py::array_t<double> evaluate_basis_derivatives(ufc::finite_element &instance,
                                                 std::size_t i,
                                                 std::size_t n,
                                                 py::array_t<double> x,
                                                 py::array_t<double> coordinate_dofs,
                                                 int cell_orientation)
  {
    // Dimensions
    const std::size_t gdim = instance.geometric_dimension();
    const std::size_t tdim = instance.topological_dimension();

    // Extract point data (x)
    py::buffer_info info_x = x.request();
    check_array_shape(x, {gdim});

    // Extract reference value data (coordinate_dofs)
    py::buffer_info info_coordinate_dofs = coordinate_dofs.request();

    // FIXME: this assumes an affine map
    check_array_shape(coordinate_dofs, {tdim + 1, gdim});

    // Shape of data to be computed and returned, and create
    py::array_t<double, py::array::c_style> f(gdim);

    // Call UFC function
    instance.evaluate_basis_derivatives(i, n, f.mutable_data(), x.data(),
                                        coordinate_dofs.data(),
                                        cell_orientation, nullptr);

    return f;
  }

  // Remove from UFC
  py::array_t<double>
  evaluate_basis_derivatives_all(ufc::finite_element &instance,
                                 std::size_t n,
                                 py::array_t<double> x,
                                 py::array_t<double> coordinate_dofs,
                                 int cell_orientation)
  {
    // Dimensions
    const std::size_t gdim = instance.geometric_dimension();
    const std::size_t tdim = instance.topological_dimension();
    const std::size_t num_dofs = instance.space_dimension();

    // Extract point data (x)
    py::buffer_info info_x = x.request();
    check_array_shape(x, {gdim});

    // Extract coordinate data (coordinate_dofs)
    py::buffer_info info_coordinate_dofs = coordinate_dofs.request();

    // FIXME: this assumes an affine map
    check_array_shape(coordinate_dofs, {tdim + 1, gdim});

    // Shape of data to be computed and returned, and create
    py::array_t<double, py::array::c_style> f({num_dofs, gdim});

    // Call UFC function
    instance.evaluate_basis_derivatives_all(n, f.mutable_data(), x.data(),
                                            coordinate_dofs.data(),
                                            cell_orientation, nullptr);

    return f;
  }

  double evaluate_dof(ufc::finite_element &instance,
                      std::size_t i,
                      const ufc::function& f,
                      py::array_t<double> coordinate_dofs,
                      int cell_orientation,
                      const ufc::cell& cell)
  {
    // Dimensions
    const std::size_t gdim = instance.geometric_dimension();
    const std::size_t tdim = instance.topological_dimension();

    // Extract coordinate data (coordinate_dofs)
    py::buffer_info info_coordinate_dofs = coordinate_dofs.request();

    // FIXME: this assumes an affine map
    check_array_shape(coordinate_dofs, {tdim + 1, gdim});

    // Call UFC function
    return instance.evaluate_dof(i, f , coordinate_dofs.data(),
                                 cell_orientation, cell, nullptr);
  }

  py::array_t<double> evaluate_dofs(ufc::finite_element &instance,
                                    const ufc::function& f,
                                    py::array_t<double> coordinate_dofs,
                                    int cell_orientation,
                                    const ufc::cell& cell)
  {
    // Dimensions
    const std::size_t gdim = instance.geometric_dimension();
    const std::size_t tdim = instance.topological_dimension();
    const std::size_t num_dofs = instance.space_dimension();

    // Extract coordinate data (coordinate_dofs)
    py::buffer_info info_coordinate_dofs = coordinate_dofs.request();

    // FIXME: this assumes an affine map
    check_array_shape(coordinate_dofs, {tdim + 1, gdim});

    // Shape of data to be computed and returned, and create
    py::array_t<double, py::array::c_style> values(num_dofs);

    // Call UFC function
    instance.evaluate_dofs(values.mutable_data(), f , coordinate_dofs.data(),
                           cell_orientation, cell, nullptr);

    return values;
  }

  py::array_t<double> interpolate_vertex_values(ufc::finite_element &instance,
                                                py::array_t<double> dof_values,
                                                py::array_t<double> coordinate_dofs,
                                                int cell_orientation)
  {
    // Dimensions
    const std::size_t gdim = instance.geometric_dimension();
    const std::size_t tdim = instance.topological_dimension();
    const std::size_t num_dofs = instance.space_dimension();
    const std::size_t num_components = instance.value_size();

    // Extract dof values (dof_values)
    py::buffer_info info_dof_values = dof_values.request();
    check_array_shape(dof_values, {num_dofs});

    // Extract coordinate data (coordinate_dofs)
    py::buffer_info info_coordinate_dofs = coordinate_dofs.request();

    // FIXME: this assumes an affine map
    check_array_shape(coordinate_dofs, {tdim + 1, gdim});

    // Shape of data to be computed and returned, and create
    std::size_t num_vertices = tdim + 1;
    py::array_t<double, py::array::c_style> vertex_values({num_vertices,
          num_components});

    // Call UFC function
    instance.interpolate_vertex_values(vertex_values.mutable_data(),
                                       dof_values.data(),
                                       coordinate_dofs.data(),
                                       cell_orientation, nullptr);

    return vertex_values;
  }

  py::array_t<double> tabulate_dof_coordinates(ufc::finite_element &instance,
                                               py::array_t<double> coordinate_dofs)
  {
    // Dimensions
    const std::size_t gdim = instance.geometric_dimension();
    const std::size_t tdim = instance.topological_dimension();
    const std::size_t num_dofs = instance.space_dimension();
    //const std::size_t num_components = instance.value_size();

    // Extract coordinate data (coordinate_dofs)
    py::buffer_info info_coordinate_dofs = coordinate_dofs.request();

    // FIXME: this assumes an affine map
    check_array_shape(coordinate_dofs, {tdim + 1, gdim});

    // Shape of data to be computed and returned, and create
    py::array_t<double, py::array::c_style> coords({num_dofs, gdim});


    // Call UFC function
    instance.tabulate_dof_coordinates(coords.mutable_data(),
                                      coordinate_dofs.data(), nullptr);

    return coords;
  }

  py::array_t<double>
  tabulate_reference_dof_coordinates(ufc::finite_element &instance)
  {
    // Dimensions
    const std::size_t gdim = instance.geometric_dimension();
    const std::size_t num_dofs = instance.space_dimension();

    // Shape of data to be computed and returned, and create
    py::array_t<double, py::array::c_style> coords({num_dofs, gdim});

    // Call UFC function
    instance.tabulate_reference_dof_coordinates(coords.mutable_data());

    return coords;
  }
}