File: test_elements.py

package info (click to toggle)
ffc 2019.2.0~git20210714.a20cbe7-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,228 kB
  • sloc: cpp: 45,285; python: 27,903; sh: 11,386; ansic: 1,069; makefile: 499
file content (249 lines) | stat: -rw-r--r-- 11,692 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# -*- coding: utf-8 -*-
"Unit tests for FFC"

# Copyright (C) 2007-2017 Anders Logg and Garth N. Wells
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Marie E. Rognes, 2010
# Modified by Lizao Li, 2016


import pytest
import os
import sys
import numpy
import math
from time import time

from ufl import *
# ufl.log.WARNING was dropped in ufl 2023.1.0. Treat as ERROR instead.
try:
    from ufl import WARNING
except ImportError:
    WARNING = ERROR
from ffc.fiatinterface import create_element
from ffc import jit


def element_coords(cell):
    if cell == "interval":
        return [(0,), (1,)]
    elif cell == "triangle":
        return [(0, 0), (1, 0), (0, 1)]
    elif cell == "tetrahedron":
        return [(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)]
    elif cell == "quadrilateral":
        return [(0, 0), (1, 0), (0, 1), (1, 1)]
    elif cell == "hexahedron":
        return [(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1)]
    else:
        RuntimeError("Unknown cell type")


def random_point(shape):
    w = numpy.random.random(len(shape))
    return sum([numpy.array(shape[i])*w[i] for i in range(len(shape))])/sum(w)


@pytest.mark.parametrize("degree, expected_dim", [(1, 3), (2, 6), (3, 10)])
def test_continuous_lagrange(degree, expected_dim):
    "Test space dimensions of continuous Lagrange elements."
    P = create_element(FiniteElement("Lagrange", "triangle", degree))
    assert P.space_dimension() == expected_dim

@pytest.mark.parametrize("degree, expected_dim", [(1, 4), (2, 9), (3, 16)])
def test_continuous_lagrange_quadrilateral(degree, expected_dim):
    "Test space dimensions of continuous TensorProduct elements (quadrilateral)."
    P = create_element(FiniteElement("Lagrange", "quadrilateral", degree))
    assert P.space_dimension() == expected_dim

@pytest.mark.parametrize("degree, expected_dim", [(0, 1), (1, 3), (2, 6), (3, 10)])
def test_discontinuous_lagrange(degree, expected_dim):
    "Test space dimensions of discontinuous Lagrange elements."
    P = create_element(FiniteElement("DG", "triangle", degree))
    assert P.space_dimension() == expected_dim

@pytest.mark.parametrize("degree, expected_dim",
                         [(0, 3), (1, 9), (2, 18), (3, 30)])
def test_regge(degree, expected_dim):
    "Test space dimensions of generalized Regge element."
    P = create_element(FiniteElement("Regge", "triangle", degree))
    assert P.space_dimension() == expected_dim

@pytest.mark.parametrize("degree, expected_dim",
                         [(0, 3), (1, 9), (2, 18), (3, 30)])
def test_hhj(degree, expected_dim):
    "Test space dimensions of Hellan-Herrmann-Johnson element."
    P = create_element(FiniteElement("HHJ", "triangle", degree))
    assert P.space_dimension() == expected_dim


class TestFunctionValues():
    """These tests examine tabulate gives the correct answers for a the
supported (non-mixed) for low degrees"""

    # FIXME: Add tests for NED and BDM/RT in 3D.

    # Shape (basis) functions on reference element
    reference_interval_1 = [lambda x: 1 - x[0], lambda x: x[0]]
    reference_triangle_1 = [lambda x: 1 - x[0] - x[1], lambda x: x[0], lambda x: x[1]]
    reference_tetrahedron_1 = [lambda x: 1 - x[0] - x[1] - x[2], lambda x: x[0],
                               lambda x: x[1], lambda x: x[2]]
    reference_triangle_bdm1 = [lambda x: (2*x[0], -x[1]),
                               lambda x: (-x[0], 2*x[1]),
                               lambda x: (2 - 2*x[0] - 3*x[1], x[1]),
                               lambda x: (- 1 + x[0] + 3*x[1], - 2*x[1]),
                               lambda x: (-x[0], -2 + 3*x[0] + 2*x[1]),
                               lambda x: (2*x[0], 1 - 3*x[0] - x[1])]
    reference_triangle_rt1 = [lambda x: (x[0], x[1]), lambda x: (1 - x[0], -x[1]),
                              lambda x: (x[0], x[1] - 1)]
    reference_triangle_rt2 = [lambda x: (-x[0] + 3*x[0]**2, -x[1] + 3*x[0]*x[1]),
                              lambda x: (-x[0] + 3*x[0]*x[1], -x[1] + 3*x[1]**2),
                              lambda x: ( 2 - 5*x[0] - 3*x[1] + 3*x[0]*x[1] + 3*x[0]**2,
                                          -2*x[1] + 3*x[0]*x[1] + 3*x[1]**2),
                              lambda x: (-1.0 + x[0] + 3*x[1] - 3*x[0]*x[1], x[1] - 3*x[1]**2),
                              lambda x: (2*x[0] - 3*x[0]*x[1] - 3*x[0]**2,
                                         -2 + 3*x[0]+ 5*x[1] - 3*x[0]*x[1] - 3*x[1]**2),
                              lambda x: (- x[0] + 3*x[0]**2,
                                       + 1 - 3*x[0] - x[1] + 3*x[0]*x[1]),
                              lambda x: (6*x[0] - 3*x[0]*x[1] - 6*x[0]**2,
                                         3*x[1] - 6*x[0]*x[1] - 3*x[1]**2),
                              lambda x: (3*x[0] - 6*x[0]*x[1] - 3*x[0]**2,
                                         6*x[1]- 3*x[0]*x[1] - 6*x[1]**2)]
    reference_triangle_ned1 = [lambda x: (-x[1], x[0]), lambda x: ( x[1], 1 - x[0]),
                               lambda x: ( 1 - x[1], x[0])]
    reference_tetrahedron_rt1 = [lambda x: (-x[0], -x[1], -x[2]),
                                 lambda x: (-1.0 + x[0], x[1], x[2]),
                                 lambda x: (-x[0], 1.0 - x[1], -x[2]),
                                 lambda x: ( x[0], x[1], -1.0 + x[2])]
    reference_tetrahedron_bdm1 = [lambda x: (-3*x[0], x[1], x[2]),
                                  lambda x: (x[0], -3*x[1], x[2]),
                                  lambda x: (x[0], x[1], -3*x[2]),
                                  lambda x: (-3.0 + 3*x[0] + 4*x[1] + 4*x[2], -x[1], -x[2]),
                                  lambda x: (1.0 - x[0] - 4*x[1], 3*x[1], -x[2]),
                                  lambda x: (1.0 - x[0] - 4*x[2], -x[1], 3*x[2]),
                                  lambda x: (x[0], 3.0 - 4*x[0] - 3*x[1] - 4*x[2], x[2]),
                                  lambda x: (-3*x[0], -1.0 + 4*x[0] + x[1], x[2]),
                                  lambda x: (x[0], -1.0 + x[1] + 4*x[2], -3*x[2]),
                                  lambda x: (-x[0], -x[1], -3.0 + 4*x[0] + 4*x[1] + 3*x[2]),
                                  lambda x: (3*x[0], -x[1], 1.0 - 4*x[0] - x[2]),
                                  lambda x: (-x[0], 3*x[1], 1.0 - 4*x[1] - x[2])]
    reference_tetrahedron_ned1 = [lambda x: (0.0, -x[2], x[1]),
                                  lambda x: (-x[2], 0.0,  x[0]),
                                  lambda x: (-x[1],  x[0], 0.0),
                                  lambda x: ( x[2], x[2], 1.0 - x[0] - x[1]),
                                  lambda x: (x[1], 1.0 - x[0] - x[2], x[1]),
                                  lambda x: (1.0 - x[1] - x[2], x[0], x[0])]
    reference_quadrilateral_1 = [lambda x: (1-x[0])*(1-x[1]),
                                 lambda x: (1-x[0])*x[1],
                                 lambda x: x[0]*(1-x[1]),
                                 lambda x: x[0]*x[1]]
    reference_hexahedron_1 = [lambda x: (1-x[0])*(1-x[1])*(1-x[2]),
                              lambda x: (1-x[0])*(1-x[1])*x[2],
                              lambda x: (1-x[0])*x[1]*(1-x[2]),
                              lambda x: (1-x[0])*x[1]*x[2],
                              lambda x: x[0]*(1-x[1])*(1-x[2]),
                              lambda x: x[0]*(1-x[1])*x[2],
                              lambda x: x[0]*x[1]*(1-x[2]),
                              lambda x: x[0]*x[1]*x[2]]

    # Tests to perform
    tests = [("Lagrange", "interval", 1, reference_interval_1),
             ("Lagrange", "triangle", 1, reference_triangle_1),
             ("Lagrange", "tetrahedron", 1, reference_tetrahedron_1),
             ("Lagrange", "quadrilateral", 1, reference_quadrilateral_1),
             ("Lagrange", "hexahedron", 1, reference_hexahedron_1),
             ("Discontinuous Lagrange", "interval", 1, reference_interval_1),
             ("Discontinuous Lagrange", "triangle", 1, reference_triangle_1),
             ("Discontinuous Lagrange", "tetrahedron", 1, reference_tetrahedron_1),
             ("Brezzi-Douglas-Marini", "triangle", 1, reference_triangle_bdm1),
             ("Raviart-Thomas", "triangle", 1, reference_triangle_rt1),
             ("Raviart-Thomas", "triangle", 2, reference_triangle_rt2),
             ("Discontinuous Raviart-Thomas", "triangle", 1, reference_triangle_rt1),
             ("Discontinuous Raviart-Thomas", "triangle", 2, reference_triangle_rt2),
             ("N1curl", "triangle", 1, reference_triangle_ned1),
             ("Raviart-Thomas", "tetrahedron", 1, reference_tetrahedron_rt1),
             ("Discontinuous Raviart-Thomas", "tetrahedron", 1, reference_tetrahedron_rt1),
             ("Brezzi-Douglas-Marini", "tetrahedron", 1, reference_tetrahedron_bdm1),
             ("N1curl", "tetrahedron", 1, reference_tetrahedron_ned1),
        ]


    @pytest.mark.parametrize("family, cell, degree, reference", tests)
    def test_values(self, family, cell, degree, reference):
        # Create element
        element = create_element(FiniteElement(family, cell, degree))

        # Get some points and check basis function values at points
        points = [random_point(element_coords(cell)) for i in range(5)]
        for x in points:
            table = element.tabulate(0, (x,))
            basis = table[list(table.keys())[0]]
            for i in range(len(basis)):
                if not element.value_shape():
                    assert round(float(basis[i]) - reference[i](x), 10) == 0.0
                else:
                    for k in range(element.value_shape()[0]):
                        assert round(basis[i][k][0] - reference[i](x)[k] , 10) == 0.0


class Test_JIT():

    def test_poisson(self):
        "Test that JIT compiler is fast enough."

        # FIXME: Use local cache: cache_dir argument to instant.build_module
        #options = {"log_level": INFO + 5}
        #options = {"log_level": 5}
        options = {"log_level": WARNING}

        # Define two forms with the same signatures
        element = FiniteElement("Lagrange", "triangle", 1)
        v = TestFunction(element)
        u = TrialFunction(element)
        f = Coefficient(element)
        g = Coefficient(element)
        a0 = f*dot(grad(v), grad(u))*dx
        a1 = g*dot(grad(v), grad(u))*dx

        # Strange this needs to be done twice

        # Compile a0 so it will be in the cache (both in-memory and disk)
        jit(a0, options)
        jit(a0, options)

        # Compile a0 again (should be really fast, using in-memory cache)
        t = time()
        jit(a0, options)
        dt0 = time() - t

        # Compile a1 (should be fairly fast, using disk cache)
        t = time()
        jit(a1, options)
        dt1 = time() - t

        # Good values
        dt0_good = 0.005
        dt1_good = 0.01

        print("\nJIT in-memory cache:", dt0)
        print("JIT disk cache:     ", dt1)
        print("Reasonable values are %g and %g" % (dt0_good, dt1_good))

        # Check times
        assert dt0 < 10*dt0_good
        assert dt1 < 10*dt1_good