1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
|
/*
* WMA compatible decoder
* Copyright (c) 2002 The FFmpeg Project.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file wmadec.c
* WMA compatible decoder.
* This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
* WMA v1 is identified by audio format 0x160 in Microsoft media files
* (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
*
* To use this decoder, a calling application must supply the extra data
* bytes provided with the WMA data. These are the extra, codec-specific
* bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
* to the decoder using the extradata[_size] fields in AVCodecContext. There
* should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
*/
#include "avcodec.h"
#include "bitstream.h"
#include "dsputil.h"
/* size of blocks */
#define BLOCK_MIN_BITS 7
#define BLOCK_MAX_BITS 11
#define BLOCK_MAX_SIZE (1 << BLOCK_MAX_BITS)
#define BLOCK_NB_SIZES (BLOCK_MAX_BITS - BLOCK_MIN_BITS + 1)
/* XXX: find exact max size */
#define HIGH_BAND_MAX_SIZE 16
#define NB_LSP_COEFS 10
/* XXX: is it a suitable value ? */
#define MAX_CODED_SUPERFRAME_SIZE 16384
#define MAX_CHANNELS 2
#define NOISE_TAB_SIZE 8192
#define LSP_POW_BITS 7
#define VLCBITS 9
#define VLCMAX ((22+VLCBITS-1)/VLCBITS)
#define EXPVLCBITS 8
#define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
#define HGAINVLCBITS 9
#define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
typedef struct WMADecodeContext {
GetBitContext gb;
int sample_rate;
int nb_channels;
int bit_rate;
int version; /* 1 = 0x160 (WMAV1), 2 = 0x161 (WMAV2) */
int block_align;
int use_bit_reservoir;
int use_variable_block_len;
int use_exp_vlc; /* exponent coding: 0 = lsp, 1 = vlc + delta */
int use_noise_coding; /* true if perceptual noise is added */
int byte_offset_bits;
VLC exp_vlc;
int exponent_sizes[BLOCK_NB_SIZES];
uint16_t exponent_bands[BLOCK_NB_SIZES][25];
int high_band_start[BLOCK_NB_SIZES]; /* index of first coef in high band */
int coefs_start; /* first coded coef */
int coefs_end[BLOCK_NB_SIZES]; /* max number of coded coefficients */
int exponent_high_sizes[BLOCK_NB_SIZES];
int exponent_high_bands[BLOCK_NB_SIZES][HIGH_BAND_MAX_SIZE];
VLC hgain_vlc;
/* coded values in high bands */
int high_band_coded[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
int high_band_values[MAX_CHANNELS][HIGH_BAND_MAX_SIZE];
/* there are two possible tables for spectral coefficients */
VLC coef_vlc[2];
uint16_t *run_table[2];
uint16_t *level_table[2];
/* frame info */
int frame_len; /* frame length in samples */
int frame_len_bits; /* frame_len = 1 << frame_len_bits */
int nb_block_sizes; /* number of block sizes */
/* block info */
int reset_block_lengths;
int block_len_bits; /* log2 of current block length */
int next_block_len_bits; /* log2 of next block length */
int prev_block_len_bits; /* log2 of prev block length */
int block_len; /* block length in samples */
int block_num; /* block number in current frame */
int block_pos; /* current position in frame */
uint8_t ms_stereo; /* true if mid/side stereo mode */
uint8_t channel_coded[MAX_CHANNELS]; /* true if channel is coded */
DECLARE_ALIGNED_16(float, exponents[MAX_CHANNELS][BLOCK_MAX_SIZE]);
float max_exponent[MAX_CHANNELS];
int16_t coefs1[MAX_CHANNELS][BLOCK_MAX_SIZE];
DECLARE_ALIGNED_16(float, coefs[MAX_CHANNELS][BLOCK_MAX_SIZE]);
MDCTContext mdct_ctx[BLOCK_NB_SIZES];
float *windows[BLOCK_NB_SIZES];
DECLARE_ALIGNED_16(FFTSample, mdct_tmp[BLOCK_MAX_SIZE]); /* temporary storage for imdct */
/* output buffer for one frame and the last for IMDCT windowing */
DECLARE_ALIGNED_16(float, frame_out[MAX_CHANNELS][BLOCK_MAX_SIZE * 2]);
/* last frame info */
uint8_t last_superframe[MAX_CODED_SUPERFRAME_SIZE + 4]; /* padding added */
int last_bitoffset;
int last_superframe_len;
float noise_table[NOISE_TAB_SIZE];
int noise_index;
float noise_mult; /* XXX: suppress that and integrate it in the noise array */
/* lsp_to_curve tables */
float lsp_cos_table[BLOCK_MAX_SIZE];
float lsp_pow_e_table[256];
float lsp_pow_m_table1[(1 << LSP_POW_BITS)];
float lsp_pow_m_table2[(1 << LSP_POW_BITS)];
DSPContext dsp;
#ifdef TRACE
int frame_count;
#endif
} WMADecodeContext;
typedef struct CoefVLCTable {
int n; /* total number of codes */
const uint32_t *huffcodes; /* VLC bit values */
const uint8_t *huffbits; /* VLC bit size */
const uint16_t *levels; /* table to build run/level tables */
} CoefVLCTable;
static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len);
#include "wmadata.h"
#ifdef TRACE
static void dump_shorts(const char *name, const short *tab, int n)
{
int i;
tprintf("%s[%d]:\n", name, n);
for(i=0;i<n;i++) {
if ((i & 7) == 0)
tprintf("%4d: ", i);
tprintf(" %5d.0", tab[i]);
if ((i & 7) == 7)
tprintf("\n");
}
}
static void dump_floats(const char *name, int prec, const float *tab, int n)
{
int i;
tprintf("%s[%d]:\n", name, n);
for(i=0;i<n;i++) {
if ((i & 7) == 0)
tprintf("%4d: ", i);
tprintf(" %8.*f", prec, tab[i]);
if ((i & 7) == 7)
tprintf("\n");
}
if ((i & 7) != 0)
tprintf("\n");
}
#endif
/* XXX: use same run/length optimization as mpeg decoders */
static void init_coef_vlc(VLC *vlc,
uint16_t **prun_table, uint16_t **plevel_table,
const CoefVLCTable *vlc_table)
{
int n = vlc_table->n;
const uint8_t *table_bits = vlc_table->huffbits;
const uint32_t *table_codes = vlc_table->huffcodes;
const uint16_t *levels_table = vlc_table->levels;
uint16_t *run_table, *level_table;
const uint16_t *p;
int i, l, j, level;
init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
run_table = av_malloc(n * sizeof(uint16_t));
level_table = av_malloc(n * sizeof(uint16_t));
p = levels_table;
i = 2;
level = 1;
while (i < n) {
l = *p++;
for(j=0;j<l;j++) {
run_table[i] = j;
level_table[i] = level;
i++;
}
level++;
}
*prun_table = run_table;
*plevel_table = level_table;
}
static int wma_decode_init(AVCodecContext * avctx)
{
WMADecodeContext *s = avctx->priv_data;
int i, flags1, flags2;
float *window;
uint8_t *extradata;
float bps1, high_freq;
volatile float bps;
int sample_rate1;
int coef_vlc_table;
s->sample_rate = avctx->sample_rate;
s->nb_channels = avctx->channels;
s->bit_rate = avctx->bit_rate;
s->block_align = avctx->block_align;
dsputil_init(&s->dsp, avctx);
if (avctx->codec->id == CODEC_ID_WMAV1) {
s->version = 1;
} else {
s->version = 2;
}
/* extract flag infos */
flags1 = 0;
flags2 = 0;
extradata = avctx->extradata;
if (s->version == 1 && avctx->extradata_size >= 4) {
flags1 = extradata[0] | (extradata[1] << 8);
flags2 = extradata[2] | (extradata[3] << 8);
} else if (s->version == 2 && avctx->extradata_size >= 6) {
flags1 = extradata[0] | (extradata[1] << 8) |
(extradata[2] << 16) | (extradata[3] << 24);
flags2 = extradata[4] | (extradata[5] << 8);
}
s->use_exp_vlc = flags2 & 0x0001;
s->use_bit_reservoir = flags2 & 0x0002;
s->use_variable_block_len = flags2 & 0x0004;
/* compute MDCT block size */
if (s->sample_rate <= 16000) {
s->frame_len_bits = 9;
} else if (s->sample_rate <= 22050 ||
(s->sample_rate <= 32000 && s->version == 1)) {
s->frame_len_bits = 10;
} else {
s->frame_len_bits = 11;
}
s->frame_len = 1 << s->frame_len_bits;
if (s->use_variable_block_len) {
int nb_max, nb;
nb = ((flags2 >> 3) & 3) + 1;
if ((s->bit_rate / s->nb_channels) >= 32000)
nb += 2;
nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
if (nb > nb_max)
nb = nb_max;
s->nb_block_sizes = nb + 1;
} else {
s->nb_block_sizes = 1;
}
/* init rate dependant parameters */
s->use_noise_coding = 1;
high_freq = s->sample_rate * 0.5;
/* if version 2, then the rates are normalized */
sample_rate1 = s->sample_rate;
if (s->version == 2) {
if (sample_rate1 >= 44100)
sample_rate1 = 44100;
else if (sample_rate1 >= 22050)
sample_rate1 = 22050;
else if (sample_rate1 >= 16000)
sample_rate1 = 16000;
else if (sample_rate1 >= 11025)
sample_rate1 = 11025;
else if (sample_rate1 >= 8000)
sample_rate1 = 8000;
}
bps = (float)s->bit_rate / (float)(s->nb_channels * s->sample_rate);
s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0 + 0.5)) + 2;
/* compute high frequency value and choose if noise coding should
be activated */
bps1 = bps;
if (s->nb_channels == 2)
bps1 = bps * 1.6;
if (sample_rate1 == 44100) {
if (bps1 >= 0.61)
s->use_noise_coding = 0;
else
high_freq = high_freq * 0.4;
} else if (sample_rate1 == 22050) {
if (bps1 >= 1.16)
s->use_noise_coding = 0;
else if (bps1 >= 0.72)
high_freq = high_freq * 0.7;
else
high_freq = high_freq * 0.6;
} else if (sample_rate1 == 16000) {
if (bps > 0.5)
high_freq = high_freq * 0.5;
else
high_freq = high_freq * 0.3;
} else if (sample_rate1 == 11025) {
high_freq = high_freq * 0.7;
} else if (sample_rate1 == 8000) {
if (bps <= 0.625) {
high_freq = high_freq * 0.5;
} else if (bps > 0.75) {
s->use_noise_coding = 0;
} else {
high_freq = high_freq * 0.65;
}
} else {
if (bps >= 0.8) {
high_freq = high_freq * 0.75;
} else if (bps >= 0.6) {
high_freq = high_freq * 0.6;
} else {
high_freq = high_freq * 0.5;
}
}
dprintf("flags1=0x%x flags2=0x%x\n", flags1, flags2);
dprintf("version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
s->version, s->nb_channels, s->sample_rate, s->bit_rate,
s->block_align);
dprintf("bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
bps, bps1, high_freq, s->byte_offset_bits);
dprintf("use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
/* compute the scale factor band sizes for each MDCT block size */
{
int a, b, pos, lpos, k, block_len, i, j, n;
const uint8_t *table;
if (s->version == 1) {
s->coefs_start = 3;
} else {
s->coefs_start = 0;
}
for(k = 0; k < s->nb_block_sizes; k++) {
block_len = s->frame_len >> k;
if (s->version == 1) {
lpos = 0;
for(i=0;i<25;i++) {
a = wma_critical_freqs[i];
b = s->sample_rate;
pos = ((block_len * 2 * a) + (b >> 1)) / b;
if (pos > block_len)
pos = block_len;
s->exponent_bands[0][i] = pos - lpos;
if (pos >= block_len) {
i++;
break;
}
lpos = pos;
}
s->exponent_sizes[0] = i;
} else {
/* hardcoded tables */
table = NULL;
a = s->frame_len_bits - BLOCK_MIN_BITS - k;
if (a < 3) {
if (s->sample_rate >= 44100)
table = exponent_band_44100[a];
else if (s->sample_rate >= 32000)
table = exponent_band_32000[a];
else if (s->sample_rate >= 22050)
table = exponent_band_22050[a];
}
if (table) {
n = *table++;
for(i=0;i<n;i++)
s->exponent_bands[k][i] = table[i];
s->exponent_sizes[k] = n;
} else {
j = 0;
lpos = 0;
for(i=0;i<25;i++) {
a = wma_critical_freqs[i];
b = s->sample_rate;
pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
pos <<= 2;
if (pos > block_len)
pos = block_len;
if (pos > lpos)
s->exponent_bands[k][j++] = pos - lpos;
if (pos >= block_len)
break;
lpos = pos;
}
s->exponent_sizes[k] = j;
}
}
/* max number of coefs */
s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
/* high freq computation */
s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
s->sample_rate + 0.5);
n = s->exponent_sizes[k];
j = 0;
pos = 0;
for(i=0;i<n;i++) {
int start, end;
start = pos;
pos += s->exponent_bands[k][i];
end = pos;
if (start < s->high_band_start[k])
start = s->high_band_start[k];
if (end > s->coefs_end[k])
end = s->coefs_end[k];
if (end > start)
s->exponent_high_bands[k][j++] = end - start;
}
s->exponent_high_sizes[k] = j;
#if 0
tprintf("%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
s->frame_len >> k,
s->coefs_end[k],
s->high_band_start[k],
s->exponent_high_sizes[k]);
for(j=0;j<s->exponent_high_sizes[k];j++)
tprintf(" %d", s->exponent_high_bands[k][j]);
tprintf("\n");
#endif
}
}
#ifdef TRACE
{
int i, j;
for(i = 0; i < s->nb_block_sizes; i++) {
tprintf("%5d: n=%2d:",
s->frame_len >> i,
s->exponent_sizes[i]);
for(j=0;j<s->exponent_sizes[i];j++)
tprintf(" %d", s->exponent_bands[i][j]);
tprintf("\n");
}
}
#endif
/* init MDCT */
for(i = 0; i < s->nb_block_sizes; i++)
ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1);
/* init MDCT windows : simple sinus window */
for(i = 0; i < s->nb_block_sizes; i++) {
int n, j;
float alpha;
n = 1 << (s->frame_len_bits - i);
window = av_malloc(sizeof(float) * n);
alpha = M_PI / (2.0 * n);
for(j=0;j<n;j++) {
window[n - j - 1] = sin((j + 0.5) * alpha);
}
s->windows[i] = window;
}
s->reset_block_lengths = 1;
if (s->use_noise_coding) {
/* init the noise generator */
if (s->use_exp_vlc)
s->noise_mult = 0.02;
else
s->noise_mult = 0.04;
#ifdef TRACE
for(i=0;i<NOISE_TAB_SIZE;i++)
s->noise_table[i] = 1.0 * s->noise_mult;
#else
{
unsigned int seed;
float norm;
seed = 1;
norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult;
for(i=0;i<NOISE_TAB_SIZE;i++) {
seed = seed * 314159 + 1;
s->noise_table[i] = (float)((int)seed) * norm;
}
}
#endif
init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(hgain_huffbits),
hgain_huffbits, 1, 1,
hgain_huffcodes, 2, 2, 0);
}
if (s->use_exp_vlc) {
init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(scale_huffbits),
scale_huffbits, 1, 1,
scale_huffcodes, 4, 4, 0);
} else {
wma_lsp_to_curve_init(s, s->frame_len);
}
/* choose the VLC tables for the coefficients */
coef_vlc_table = 2;
if (s->sample_rate >= 32000) {
if (bps1 < 0.72)
coef_vlc_table = 0;
else if (bps1 < 1.16)
coef_vlc_table = 1;
}
init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
&coef_vlcs[coef_vlc_table * 2]);
init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
&coef_vlcs[coef_vlc_table * 2 + 1]);
return 0;
}
/* interpolate values for a bigger or smaller block. The block must
have multiple sizes */
static void interpolate_array(float *scale, int old_size, int new_size)
{
int i, j, jincr, k;
float v;
if (new_size > old_size) {
jincr = new_size / old_size;
j = new_size;
for(i = old_size - 1; i >=0; i--) {
v = scale[i];
k = jincr;
do {
scale[--j] = v;
} while (--k);
}
} else if (new_size < old_size) {
j = 0;
jincr = old_size / new_size;
for(i = 0; i < new_size; i++) {
scale[i] = scale[j];
j += jincr;
}
}
}
/* compute x^-0.25 with an exponent and mantissa table. We use linear
interpolation to reduce the mantissa table size at a small speed
expense (linear interpolation approximately doubles the number of
bits of precision). */
static inline float pow_m1_4(WMADecodeContext *s, float x)
{
union {
float f;
unsigned int v;
} u, t;
unsigned int e, m;
float a, b;
u.f = x;
e = u.v >> 23;
m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
/* build interpolation scale: 1 <= t < 2. */
t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
a = s->lsp_pow_m_table1[m];
b = s->lsp_pow_m_table2[m];
return s->lsp_pow_e_table[e] * (a + b * t.f);
}
static void wma_lsp_to_curve_init(WMADecodeContext *s, int frame_len)
{
float wdel, a, b;
int i, e, m;
wdel = M_PI / frame_len;
for(i=0;i<frame_len;i++)
s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
/* tables for x^-0.25 computation */
for(i=0;i<256;i++) {
e = i - 126;
s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
}
/* NOTE: these two tables are needed to avoid two operations in
pow_m1_4 */
b = 1.0;
for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
m = (1 << LSP_POW_BITS) + i;
a = (float)m * (0.5 / (1 << LSP_POW_BITS));
a = pow(a, -0.25);
s->lsp_pow_m_table1[i] = 2 * a - b;
s->lsp_pow_m_table2[i] = b - a;
b = a;
}
#if 0
for(i=1;i<20;i++) {
float v, r1, r2;
v = 5.0 / i;
r1 = pow_m1_4(s, v);
r2 = pow(v,-0.25);
printf("%f^-0.25=%f e=%f\n", v, r1, r2 - r1);
}
#endif
}
/* NOTE: We use the same code as Vorbis here */
/* XXX: optimize it further with SSE/3Dnow */
static void wma_lsp_to_curve(WMADecodeContext *s,
float *out, float *val_max_ptr,
int n, float *lsp)
{
int i, j;
float p, q, w, v, val_max;
val_max = 0;
for(i=0;i<n;i++) {
p = 0.5f;
q = 0.5f;
w = s->lsp_cos_table[i];
for(j=1;j<NB_LSP_COEFS;j+=2){
q *= w - lsp[j - 1];
p *= w - lsp[j];
}
p *= p * (2.0f - w);
q *= q * (2.0f + w);
v = p + q;
v = pow_m1_4(s, v);
if (v > val_max)
val_max = v;
out[i] = v;
}
*val_max_ptr = val_max;
}
/* decode exponents coded with LSP coefficients (same idea as Vorbis) */
static void decode_exp_lsp(WMADecodeContext *s, int ch)
{
float lsp_coefs[NB_LSP_COEFS];
int val, i;
for(i = 0; i < NB_LSP_COEFS; i++) {
if (i == 0 || i >= 8)
val = get_bits(&s->gb, 3);
else
val = get_bits(&s->gb, 4);
lsp_coefs[i] = lsp_codebook[i][val];
}
wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
s->block_len, lsp_coefs);
}
/* decode exponents coded with VLC codes */
static int decode_exp_vlc(WMADecodeContext *s, int ch)
{
int last_exp, n, code;
const uint16_t *ptr, *band_ptr;
float v, *q, max_scale, *q_end;
band_ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
ptr = band_ptr;
q = s->exponents[ch];
q_end = q + s->block_len;
max_scale = 0;
if (s->version == 1) {
last_exp = get_bits(&s->gb, 5) + 10;
/* XXX: use a table */
v = pow(10, last_exp * (1.0 / 16.0));
max_scale = v;
n = *ptr++;
do {
*q++ = v;
} while (--n);
}
last_exp = 36;
while (q < q_end) {
code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
if (code < 0)
return -1;
/* NOTE: this offset is the same as MPEG4 AAC ! */
last_exp += code - 60;
/* XXX: use a table */
v = pow(10, last_exp * (1.0 / 16.0));
if (v > max_scale)
max_scale = v;
n = *ptr++;
do {
*q++ = v;
} while (--n);
}
s->max_exponent[ch] = max_scale;
return 0;
}
/* return 0 if OK. return 1 if last block of frame. return -1 if
unrecorrable error. */
static int wma_decode_block(WMADecodeContext *s)
{
int n, v, a, ch, code, bsize;
int coef_nb_bits, total_gain, parse_exponents;
DECLARE_ALIGNED_16(float, window[BLOCK_MAX_SIZE * 2]);
// XXX: FIXME!! there's a bug somewhere which makes this mandatory under altivec
#ifdef HAVE_ALTIVEC
volatile int nb_coefs[MAX_CHANNELS] __attribute__((aligned(16)));
#else
int nb_coefs[MAX_CHANNELS];
#endif
float mdct_norm;
#ifdef TRACE
tprintf("***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
#endif
/* compute current block length */
if (s->use_variable_block_len) {
n = av_log2(s->nb_block_sizes - 1) + 1;
if (s->reset_block_lengths) {
s->reset_block_lengths = 0;
v = get_bits(&s->gb, n);
if (v >= s->nb_block_sizes)
return -1;
s->prev_block_len_bits = s->frame_len_bits - v;
v = get_bits(&s->gb, n);
if (v >= s->nb_block_sizes)
return -1;
s->block_len_bits = s->frame_len_bits - v;
} else {
/* update block lengths */
s->prev_block_len_bits = s->block_len_bits;
s->block_len_bits = s->next_block_len_bits;
}
v = get_bits(&s->gb, n);
if (v >= s->nb_block_sizes)
return -1;
s->next_block_len_bits = s->frame_len_bits - v;
} else {
/* fixed block len */
s->next_block_len_bits = s->frame_len_bits;
s->prev_block_len_bits = s->frame_len_bits;
s->block_len_bits = s->frame_len_bits;
}
/* now check if the block length is coherent with the frame length */
s->block_len = 1 << s->block_len_bits;
if ((s->block_pos + s->block_len) > s->frame_len)
return -1;
if (s->nb_channels == 2) {
s->ms_stereo = get_bits(&s->gb, 1);
}
v = 0;
for(ch = 0; ch < s->nb_channels; ch++) {
a = get_bits(&s->gb, 1);
s->channel_coded[ch] = a;
v |= a;
}
/* if no channel coded, no need to go further */
/* XXX: fix potential framing problems */
if (!v)
goto next;
bsize = s->frame_len_bits - s->block_len_bits;
/* read total gain and extract corresponding number of bits for
coef escape coding */
total_gain = 1;
for(;;) {
a = get_bits(&s->gb, 7);
total_gain += a;
if (a != 127)
break;
}
if (total_gain < 15)
coef_nb_bits = 13;
else if (total_gain < 32)
coef_nb_bits = 12;
else if (total_gain < 40)
coef_nb_bits = 11;
else if (total_gain < 45)
coef_nb_bits = 10;
else
coef_nb_bits = 9;
/* compute number of coefficients */
n = s->coefs_end[bsize] - s->coefs_start;
for(ch = 0; ch < s->nb_channels; ch++)
nb_coefs[ch] = n;
/* complex coding */
if (s->use_noise_coding) {
for(ch = 0; ch < s->nb_channels; ch++) {
if (s->channel_coded[ch]) {
int i, n, a;
n = s->exponent_high_sizes[bsize];
for(i=0;i<n;i++) {
a = get_bits(&s->gb, 1);
s->high_band_coded[ch][i] = a;
/* if noise coding, the coefficients are not transmitted */
if (a)
nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
}
}
}
for(ch = 0; ch < s->nb_channels; ch++) {
if (s->channel_coded[ch]) {
int i, n, val, code;
n = s->exponent_high_sizes[bsize];
val = (int)0x80000000;
for(i=0;i<n;i++) {
if (s->high_band_coded[ch][i]) {
if (val == (int)0x80000000) {
val = get_bits(&s->gb, 7) - 19;
} else {
code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
if (code < 0)
return -1;
val += code - 18;
}
s->high_band_values[ch][i] = val;
}
}
}
}
}
/* exposant can be interpolated in short blocks. */
parse_exponents = 1;
if (s->block_len_bits != s->frame_len_bits) {
parse_exponents = get_bits(&s->gb, 1);
}
if (parse_exponents) {
for(ch = 0; ch < s->nb_channels; ch++) {
if (s->channel_coded[ch]) {
if (s->use_exp_vlc) {
if (decode_exp_vlc(s, ch) < 0)
return -1;
} else {
decode_exp_lsp(s, ch);
}
}
}
} else {
for(ch = 0; ch < s->nb_channels; ch++) {
if (s->channel_coded[ch]) {
interpolate_array(s->exponents[ch], 1 << s->prev_block_len_bits,
s->block_len);
}
}
}
/* parse spectral coefficients : just RLE encoding */
for(ch = 0; ch < s->nb_channels; ch++) {
if (s->channel_coded[ch]) {
VLC *coef_vlc;
int level, run, sign, tindex;
int16_t *ptr, *eptr;
const int16_t *level_table, *run_table;
/* special VLC tables are used for ms stereo because
there is potentially less energy there */
tindex = (ch == 1 && s->ms_stereo);
coef_vlc = &s->coef_vlc[tindex];
run_table = s->run_table[tindex];
level_table = s->level_table[tindex];
/* XXX: optimize */
ptr = &s->coefs1[ch][0];
eptr = ptr + nb_coefs[ch];
memset(ptr, 0, s->block_len * sizeof(int16_t));
for(;;) {
code = get_vlc2(&s->gb, coef_vlc->table, VLCBITS, VLCMAX);
if (code < 0)
return -1;
if (code == 1) {
/* EOB */
break;
} else if (code == 0) {
/* escape */
level = get_bits(&s->gb, coef_nb_bits);
/* NOTE: this is rather suboptimal. reading
block_len_bits would be better */
run = get_bits(&s->gb, s->frame_len_bits);
} else {
/* normal code */
run = run_table[code];
level = level_table[code];
}
sign = get_bits(&s->gb, 1);
if (!sign)
level = -level;
ptr += run;
if (ptr >= eptr)
{
av_log(NULL, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
break;
}
*ptr++ = level;
/* NOTE: EOB can be omitted */
if (ptr >= eptr)
break;
}
}
if (s->version == 1 && s->nb_channels >= 2) {
align_get_bits(&s->gb);
}
}
/* normalize */
{
int n4 = s->block_len / 2;
mdct_norm = 1.0 / (float)n4;
if (s->version == 1) {
mdct_norm *= sqrt(n4);
}
}
/* finally compute the MDCT coefficients */
for(ch = 0; ch < s->nb_channels; ch++) {
if (s->channel_coded[ch]) {
int16_t *coefs1;
float *coefs, *exponents, mult, mult1, noise, *exp_ptr;
int i, j, n, n1, last_high_band;
float exp_power[HIGH_BAND_MAX_SIZE];
coefs1 = s->coefs1[ch];
exponents = s->exponents[ch];
mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
mult *= mdct_norm;
coefs = s->coefs[ch];
if (s->use_noise_coding) {
mult1 = mult;
/* very low freqs : noise */
for(i = 0;i < s->coefs_start; i++) {
*coefs++ = s->noise_table[s->noise_index] * (*exponents++) * mult1;
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
}
n1 = s->exponent_high_sizes[bsize];
/* compute power of high bands */
exp_ptr = exponents +
s->high_band_start[bsize] -
s->coefs_start;
last_high_band = 0; /* avoid warning */
for(j=0;j<n1;j++) {
n = s->exponent_high_bands[s->frame_len_bits -
s->block_len_bits][j];
if (s->high_band_coded[ch][j]) {
float e2, v;
e2 = 0;
for(i = 0;i < n; i++) {
v = exp_ptr[i];
e2 += v * v;
}
exp_power[j] = e2 / n;
last_high_band = j;
tprintf("%d: power=%f (%d)\n", j, exp_power[j], n);
}
exp_ptr += n;
}
/* main freqs and high freqs */
for(j=-1;j<n1;j++) {
if (j < 0) {
n = s->high_band_start[bsize] -
s->coefs_start;
} else {
n = s->exponent_high_bands[s->frame_len_bits -
s->block_len_bits][j];
}
if (j >= 0 && s->high_band_coded[ch][j]) {
/* use noise with specified power */
mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
/* XXX: use a table */
mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
mult1 *= mdct_norm;
for(i = 0;i < n; i++) {
noise = s->noise_table[s->noise_index];
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
*coefs++ = (*exponents++) * noise * mult1;
}
} else {
/* coded values + small noise */
for(i = 0;i < n; i++) {
noise = s->noise_table[s->noise_index];
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
*coefs++ = ((*coefs1++) + noise) * (*exponents++) * mult;
}
}
}
/* very high freqs : noise */
n = s->block_len - s->coefs_end[bsize];
mult1 = mult * exponents[-1];
for(i = 0; i < n; i++) {
*coefs++ = s->noise_table[s->noise_index] * mult1;
s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
}
} else {
/* XXX: optimize more */
for(i = 0;i < s->coefs_start; i++)
*coefs++ = 0.0;
n = nb_coefs[ch];
for(i = 0;i < n; i++) {
*coefs++ = coefs1[i] * exponents[i] * mult;
}
n = s->block_len - s->coefs_end[bsize];
for(i = 0;i < n; i++)
*coefs++ = 0.0;
}
}
}
#ifdef TRACE
for(ch = 0; ch < s->nb_channels; ch++) {
if (s->channel_coded[ch]) {
dump_floats("exponents", 3, s->exponents[ch], s->block_len);
dump_floats("coefs", 1, s->coefs[ch], s->block_len);
}
}
#endif
if (s->ms_stereo && s->channel_coded[1]) {
float a, b;
int i;
/* nominal case for ms stereo: we do it before mdct */
/* no need to optimize this case because it should almost
never happen */
if (!s->channel_coded[0]) {
tprintf("rare ms-stereo case happened\n");
memset(s->coefs[0], 0, sizeof(float) * s->block_len);
s->channel_coded[0] = 1;
}
for(i = 0; i < s->block_len; i++) {
a = s->coefs[0][i];
b = s->coefs[1][i];
s->coefs[0][i] = a + b;
s->coefs[1][i] = a - b;
}
}
/* build the window : we ensure that when the windows overlap
their squared sum is always 1 (MDCT reconstruction rule) */
/* XXX: merge with output */
{
int i, next_block_len, block_len, prev_block_len, n;
float *wptr;
block_len = s->block_len;
prev_block_len = 1 << s->prev_block_len_bits;
next_block_len = 1 << s->next_block_len_bits;
/* right part */
wptr = window + block_len;
if (block_len <= next_block_len) {
for(i=0;i<block_len;i++)
*wptr++ = s->windows[bsize][i];
} else {
/* overlap */
n = (block_len / 2) - (next_block_len / 2);
for(i=0;i<n;i++)
*wptr++ = 1.0;
for(i=0;i<next_block_len;i++)
*wptr++ = s->windows[s->frame_len_bits - s->next_block_len_bits][i];
for(i=0;i<n;i++)
*wptr++ = 0.0;
}
/* left part */
wptr = window + block_len;
if (block_len <= prev_block_len) {
for(i=0;i<block_len;i++)
*--wptr = s->windows[bsize][i];
} else {
/* overlap */
n = (block_len / 2) - (prev_block_len / 2);
for(i=0;i<n;i++)
*--wptr = 1.0;
for(i=0;i<prev_block_len;i++)
*--wptr = s->windows[s->frame_len_bits - s->prev_block_len_bits][i];
for(i=0;i<n;i++)
*--wptr = 0.0;
}
}
for(ch = 0; ch < s->nb_channels; ch++) {
if (s->channel_coded[ch]) {
DECLARE_ALIGNED_16(FFTSample, output[BLOCK_MAX_SIZE * 2]);
float *ptr;
int n4, index, n;
n = s->block_len;
n4 = s->block_len / 2;
s->mdct_ctx[bsize].fft.imdct_calc(&s->mdct_ctx[bsize],
output, s->coefs[ch], s->mdct_tmp);
/* XXX: optimize all that by build the window and
multipying/adding at the same time */
/* multiply by the window and add in the frame */
index = (s->frame_len / 2) + s->block_pos - n4;
ptr = &s->frame_out[ch][index];
s->dsp.vector_fmul_add_add(ptr,window,output,ptr,0,2*n,1);
/* specific fast case for ms-stereo : add to second
channel if it is not coded */
if (s->ms_stereo && !s->channel_coded[1]) {
ptr = &s->frame_out[1][index];
s->dsp.vector_fmul_add_add(ptr,window,output,ptr,0,2*n,1);
}
}
}
next:
/* update block number */
s->block_num++;
s->block_pos += s->block_len;
if (s->block_pos >= s->frame_len)
return 1;
else
return 0;
}
/* decode a frame of frame_len samples */
static int wma_decode_frame(WMADecodeContext *s, int16_t *samples)
{
int ret, i, n, a, ch, incr;
int16_t *ptr;
float *iptr;
#ifdef TRACE
tprintf("***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
#endif
/* read each block */
s->block_num = 0;
s->block_pos = 0;
for(;;) {
ret = wma_decode_block(s);
if (ret < 0)
return -1;
if (ret)
break;
}
/* convert frame to integer */
n = s->frame_len;
incr = s->nb_channels;
for(ch = 0; ch < s->nb_channels; ch++) {
ptr = samples + ch;
iptr = s->frame_out[ch];
for(i=0;i<n;i++) {
a = lrintf(*iptr++);
if (a > 32767)
a = 32767;
else if (a < -32768)
a = -32768;
*ptr = a;
ptr += incr;
}
/* prepare for next block */
memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
s->frame_len * sizeof(float));
/* XXX: suppress this */
memset(&s->frame_out[ch][s->frame_len], 0,
s->frame_len * sizeof(float));
}
#ifdef TRACE
dump_shorts("samples", samples, n * s->nb_channels);
#endif
return 0;
}
static int wma_decode_superframe(AVCodecContext *avctx,
void *data, int *data_size,
uint8_t *buf, int buf_size)
{
WMADecodeContext *s = avctx->priv_data;
int nb_frames, bit_offset, i, pos, len;
uint8_t *q;
int16_t *samples;
tprintf("***decode_superframe:\n");
if(buf_size==0){
s->last_superframe_len = 0;
return 0;
}
samples = data;
init_get_bits(&s->gb, buf, buf_size*8);
if (s->use_bit_reservoir) {
/* read super frame header */
get_bits(&s->gb, 4); /* super frame index */
nb_frames = get_bits(&s->gb, 4) - 1;
bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
if (s->last_superframe_len > 0) {
// printf("skip=%d\n", s->last_bitoffset);
/* add bit_offset bits to last frame */
if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
MAX_CODED_SUPERFRAME_SIZE)
goto fail;
q = s->last_superframe + s->last_superframe_len;
len = bit_offset;
while (len > 7) {
*q++ = (get_bits)(&s->gb, 8);
len -= 8;
}
if (len > 0) {
*q++ = (get_bits)(&s->gb, len) << (8 - len);
}
/* XXX: bit_offset bits into last frame */
init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
/* skip unused bits */
if (s->last_bitoffset > 0)
skip_bits(&s->gb, s->last_bitoffset);
/* this frame is stored in the last superframe and in the
current one */
if (wma_decode_frame(s, samples) < 0)
goto fail;
samples += s->nb_channels * s->frame_len;
}
/* read each frame starting from bit_offset */
pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
len = pos & 7;
if (len > 0)
skip_bits(&s->gb, len);
s->reset_block_lengths = 1;
for(i=0;i<nb_frames;i++) {
if (wma_decode_frame(s, samples) < 0)
goto fail;
samples += s->nb_channels * s->frame_len;
}
/* we copy the end of the frame in the last frame buffer */
pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
s->last_bitoffset = pos & 7;
pos >>= 3;
len = buf_size - pos;
if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
goto fail;
}
s->last_superframe_len = len;
memcpy(s->last_superframe, buf + pos, len);
} else {
/* single frame decode */
if (wma_decode_frame(s, samples) < 0)
goto fail;
samples += s->nb_channels * s->frame_len;
}
*data_size = (int8_t *)samples - (int8_t *)data;
return s->block_align;
fail:
/* when error, we reset the bit reservoir */
s->last_superframe_len = 0;
return -1;
}
static int wma_decode_end(AVCodecContext *avctx)
{
WMADecodeContext *s = avctx->priv_data;
int i;
for(i = 0; i < s->nb_block_sizes; i++)
ff_mdct_end(&s->mdct_ctx[i]);
for(i = 0; i < s->nb_block_sizes; i++)
av_free(s->windows[i]);
if (s->use_exp_vlc) {
free_vlc(&s->exp_vlc);
}
if (s->use_noise_coding) {
free_vlc(&s->hgain_vlc);
}
for(i = 0;i < 2; i++) {
free_vlc(&s->coef_vlc[i]);
av_free(s->run_table[i]);
av_free(s->level_table[i]);
}
return 0;
}
AVCodec wmav1_decoder =
{
"wmav1",
CODEC_TYPE_AUDIO,
CODEC_ID_WMAV1,
sizeof(WMADecodeContext),
wma_decode_init,
NULL,
wma_decode_end,
wma_decode_superframe,
};
AVCodec wmav2_decoder =
{
"wmav2",
CODEC_TYPE_AUDIO,
CODEC_ID_WMAV2,
sizeof(WMADecodeContext),
wma_decode_init,
NULL,
wma_decode_end,
wma_decode_superframe,
};
|