1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
/*
* LPC utility code
* Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "libavutil/common.h"
#include "libavutil/lls.h"
#include "libavutil/mem.h"
#include "libavutil/mem_internal.h"
#define LPC_USE_DOUBLE
#include "lpc.h"
#include "lpc_functions.h"
#include "libavutil/avassert.h"
/**
* Schur recursion.
* Produces reflection coefficients from autocorrelation data.
*/
static inline void compute_ref_coefs(const LPC_TYPE *autoc, int max_order,
LPC_TYPE *ref, LPC_TYPE *error)
{
LPC_TYPE err;
LPC_TYPE gen0[MAX_LPC_ORDER], gen1[MAX_LPC_ORDER];
for (int i = 0; i < max_order; i++)
gen0[i] = gen1[i] = autoc[i + 1];
err = autoc[0];
ref[0] = -gen1[0] / ((LPC_USE_FIXED || err) ? err : 1);
err += gen1[0] * ref[0];
if (error)
error[0] = err;
for (int i = 1; i < max_order; i++) {
for (int j = 0; j < max_order - i; j++) {
gen1[j] = gen1[j + 1] + ref[i - 1] * gen0[j];
gen0[j] = gen1[j + 1] * ref[i - 1] + gen0[j];
}
ref[i] = -gen1[0] / ((LPC_USE_FIXED || err) ? err : 1);
err += gen1[0] * ref[i];
if (error)
error[i] = err;
}
}
/**
* Apply Welch window function to audio block
*/
static void lpc_apply_welch_window_c(const int32_t *data, ptrdiff_t len,
double *w_data)
{
int i, n2;
double w;
double c;
if (len == 1) {
w_data[0] = 0.0;
return;
}
n2 = (len >> 1);
c = 2.0 / (len - 1.0);
if (len & 1) {
for(i=0; i<n2; i++) {
w = c - i - 1.0;
w = 1.0 - (w * w);
w_data[i] = data[i] * w;
w_data[len-1-i] = data[len-1-i] * w;
}
w_data[n2] = 0.0;
return;
}
w_data+=n2;
data+=n2;
for(i=0; i<n2; i++) {
w = c - n2 + i;
w = 1.0 - (w * w);
w_data[-i-1] = data[-i-1] * w;
w_data[+i ] = data[+i ] * w;
}
}
/**
* Calculate autocorrelation data from audio samples
* A Welch window function is applied before calculation.
*/
static void lpc_compute_autocorr_c(const double *data, ptrdiff_t len, int lag,
double *autoc)
{
int i, j;
for(j=0; j<lag; j+=2){
double sum0 = 1.0, sum1 = 1.0;
for(i=j; i<len; i++){
sum0 += data[i] * data[i-j];
sum1 += data[i] * data[i-j-1];
}
autoc[j ] = sum0;
autoc[j+1] = sum1;
}
if(j==lag){
double sum = 1.0;
for(i=j-1; i<len; i++){
sum += data[i] * data[i-j];
}
autoc[j] = sum;
}
}
/**
* Quantize LPC coefficients
*/
static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
int32_t *lpc_out, int *shift, int min_shift,
int max_shift, int zero_shift)
{
int i;
double cmax, error;
int32_t qmax;
int sh;
/* define maximum levels */
qmax = (1 << (precision - 1)) - 1;
/* find maximum coefficient value */
cmax = 0.0;
for(i=0; i<order; i++) {
cmax= FFMAX(cmax, fabs(lpc_in[i]));
}
/* if maximum value quantizes to zero, return all zeros */
if(cmax * (1 << max_shift) < 1.0) {
*shift = zero_shift;
memset(lpc_out, 0, sizeof(int32_t) * order);
return;
}
/* calculate level shift which scales max coeff to available bits */
sh = max_shift;
while((cmax * (1 << sh) > qmax) && (sh > min_shift)) {
sh--;
}
/* since negative shift values are unsupported in decoder, scale down
coefficients instead */
if(sh == 0 && cmax > qmax) {
double scale = ((double)qmax) / cmax;
for(i=0; i<order; i++) {
lpc_in[i] *= scale;
}
}
/* output quantized coefficients and level shift */
error=0;
for(i=0; i<order; i++) {
error -= lpc_in[i] * (1 << sh);
lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
error -= lpc_out[i];
}
*shift = sh;
}
static int estimate_best_order(double *ref, int min_order, int max_order)
{
int i, est;
est = min_order;
for(i=max_order-1; i>=min_order-1; i--) {
if(ref[i] > 0.10) {
est = i+1;
break;
}
}
return est;
}
int ff_lpc_calc_ref_coefs(LPCContext *s,
const int32_t *samples, int order, double *ref)
{
double autoc[MAX_LPC_ORDER + 1];
s->lpc_apply_welch_window(samples, s->blocksize, s->windowed_samples);
s->lpc_compute_autocorr(s->windowed_samples, s->blocksize, order, autoc);
compute_ref_coefs(autoc, order, ref, NULL);
return order;
}
double ff_lpc_calc_ref_coefs_f(LPCContext *s, const float *samples, int len,
int order, double *ref)
{
int i;
double signal = 0.0f, avg_err = 0.0f;
double autoc[MAX_LPC_ORDER+1] = {0}, error[MAX_LPC_ORDER+1] = {0};
const double a = 0.5f, b = 1.0f - a;
/* Apply windowing */
for (i = 0; i <= len / 2; i++) {
double weight = a - b*cos((2*M_PI*i)/(len - 1));
s->windowed_samples[i] = weight*samples[i];
s->windowed_samples[len-1-i] = weight*samples[len-1-i];
}
s->lpc_compute_autocorr(s->windowed_samples, len, order, autoc);
signal = autoc[0];
compute_ref_coefs(autoc, order, ref, error);
for (i = 0; i < order; i++)
avg_err = (avg_err + error[i])/2.0f;
return avg_err ? signal/avg_err : NAN;
}
/**
* Calculate LPC coefficients for multiple orders
*
* @param lpc_type LPC method for determining coefficients,
* see #FFLPCType for details
*/
int ff_lpc_calc_coefs(LPCContext *s,
const int32_t *samples, int blocksize, int min_order,
int max_order, int precision,
int32_t coefs[][MAX_LPC_ORDER], int *shift,
enum FFLPCType lpc_type, int lpc_passes,
int omethod, int min_shift, int max_shift, int zero_shift)
{
double autoc[MAX_LPC_ORDER+1];
double ref[MAX_LPC_ORDER] = { 0 };
double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
int i, j, pass = 0;
int opt_order;
av_assert2(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER &&
lpc_type > FF_LPC_TYPE_FIXED);
av_assert0(lpc_type == FF_LPC_TYPE_CHOLESKY || lpc_type == FF_LPC_TYPE_LEVINSON);
/* reinit LPC context if parameters have changed */
if (blocksize != s->blocksize || max_order != s->max_order ||
lpc_type != s->lpc_type) {
ff_lpc_end(s);
ff_lpc_init(s, blocksize, max_order, lpc_type);
}
if(lpc_passes <= 0)
lpc_passes = 2;
if (lpc_type == FF_LPC_TYPE_LEVINSON || (lpc_type == FF_LPC_TYPE_CHOLESKY && lpc_passes > 1)) {
s->lpc_apply_welch_window(samples, blocksize, s->windowed_samples);
s->lpc_compute_autocorr(s->windowed_samples, blocksize, max_order, autoc);
compute_lpc_coefs(autoc, 0, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1, NULL);
for(i=0; i<max_order; i++)
ref[i] = fabs(lpc[i][i]);
pass++;
}
if (lpc_type == FF_LPC_TYPE_CHOLESKY) {
LLSModel *m = s->lls_models;
LOCAL_ALIGNED(32, double, var, [FFALIGN(MAX_LPC_ORDER+1,4)]);
double av_uninit(weight);
memset(var, 0, FFALIGN(MAX_LPC_ORDER+1,4)*sizeof(*var));
/* Avoids initializing with an unused value when lpc_passes == 1 */
if (lpc_passes > 1)
for(j=0; j<max_order; j++)
m[0].coeff[max_order-1][j] = -lpc[max_order-1][j];
for(; pass<lpc_passes; pass++){
avpriv_init_lls(&m[pass&1], max_order);
weight=0;
for(i=max_order; i<blocksize; i++){
for(j=0; j<=max_order; j++)
var[j]= samples[i-j];
if(pass){
double eval, inv, rinv;
eval= m[pass&1].evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
eval= (512>>pass) + fabs(eval - var[0]);
inv = 1/eval;
rinv = sqrt(inv);
for(j=0; j<=max_order; j++)
var[j] *= rinv;
weight += inv;
}else
weight++;
m[pass&1].update_lls(&m[pass&1], var);
}
avpriv_solve_lls(&m[pass&1], 0.001, 0);
}
for(i=0; i<max_order; i++){
for(j=0; j<max_order; j++)
lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
}
for(i=max_order-1; i>0; i--)
ref[i] = ref[i-1] - ref[i];
}
opt_order = max_order;
if(omethod == ORDER_METHOD_EST) {
opt_order = estimate_best_order(ref, min_order, max_order);
i = opt_order-1;
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i],
min_shift, max_shift, zero_shift);
} else {
for(i=min_order-1; i<max_order; i++) {
quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i],
min_shift, max_shift, zero_shift);
}
}
return opt_order;
}
av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order,
enum FFLPCType lpc_type)
{
s->blocksize = blocksize;
s->max_order = max_order;
s->lpc_type = lpc_type;
s->windowed_buffer = av_mallocz((blocksize + 2 + FFALIGN(max_order, 4)) *
sizeof(*s->windowed_samples));
if (!s->windowed_buffer)
return AVERROR(ENOMEM);
s->windowed_samples = s->windowed_buffer + FFALIGN(max_order, 4);
s->lpc_apply_welch_window = lpc_apply_welch_window_c;
s->lpc_compute_autocorr = lpc_compute_autocorr_c;
#if ARCH_RISCV
ff_lpc_init_riscv(s);
#elif ARCH_X86
ff_lpc_init_x86(s);
#endif
return 0;
}
av_cold void ff_lpc_end(LPCContext *s)
{
av_freep(&s->windowed_buffer);
}
|