1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
|
/*
* ProRes RAW decoder
*
* Copyright (c) 2025 Lynne <dev@lynne.ee>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define I16(x) (int16_t(x))
#define COMP_ID (gl_LocalInvocationID.z)
#define BLOCK_ID (gl_LocalInvocationID.y)
#define ROW_ID (gl_LocalInvocationID.x)
GetBitContext gb;
shared float btemp[gl_WorkGroupSize.z][16][64] = { };
shared float block[gl_WorkGroupSize.z][16][64];
void idct8_horiz(const uint row_id)
{
float t0, t1, t2, t3, t4, t5, t6, t7, u8;
float u0, u1, u2, u3, u4, u5, u6, u7;
/* Input */
t0 = block[COMP_ID][BLOCK_ID][8*row_id + 0];
u4 = block[COMP_ID][BLOCK_ID][8*row_id + 1];
t2 = block[COMP_ID][BLOCK_ID][8*row_id + 2];
u6 = block[COMP_ID][BLOCK_ID][8*row_id + 3];
t1 = block[COMP_ID][BLOCK_ID][8*row_id + 4];
u5 = block[COMP_ID][BLOCK_ID][8*row_id + 5];
t3 = block[COMP_ID][BLOCK_ID][8*row_id + 6];
u7 = block[COMP_ID][BLOCK_ID][8*row_id + 7];
/* Embedded scaled inverse 4-point Type-II DCT */
u0 = t0 + t1;
u1 = t0 - t1;
u3 = t2 + t3;
u2 = (t2 - t3)*(1.4142135623730950488016887242097f) - u3;
t0 = u0 + u3;
t3 = u0 - u3;
t1 = u1 + u2;
t2 = u1 - u2;
/* Embedded scaled inverse 4-point Type-IV DST */
t5 = u5 + u6;
t6 = u5 - u6;
t7 = u4 + u7;
t4 = u4 - u7;
u7 = t7 + t5;
u5 = (t7 - t5)*(1.4142135623730950488016887242097f);
u8 = (t4 + t6)*(1.8477590650225735122563663787936f);
u4 = u8 - t4*(1.0823922002923939687994464107328f);
u6 = u8 - t6*(2.6131259297527530557132863468544f);
t7 = u7;
t6 = t7 - u6;
t5 = t6 + u5;
t4 = t5 - u4;
/* Butterflies */
u0 = t0 + t7;
u7 = t0 - t7;
u6 = t1 + t6;
u1 = t1 - t6;
u2 = t2 + t5;
u5 = t2 - t5;
u4 = t3 + t4;
u3 = t3 - t4;
/* Output */
btemp[COMP_ID][BLOCK_ID][0*8 + row_id] = u0;
btemp[COMP_ID][BLOCK_ID][1*8 + row_id] = u1;
btemp[COMP_ID][BLOCK_ID][2*8 + row_id] = u2;
btemp[COMP_ID][BLOCK_ID][3*8 + row_id] = u3;
btemp[COMP_ID][BLOCK_ID][4*8 + row_id] = u4;
btemp[COMP_ID][BLOCK_ID][5*8 + row_id] = u5;
btemp[COMP_ID][BLOCK_ID][6*8 + row_id] = u6;
btemp[COMP_ID][BLOCK_ID][7*8 + row_id] = u7;
}
void idct8_vert(const uint row_id)
{
float t0, t1, t2, t3, t4, t5, t6, t7, u8;
float u0, u1, u2, u3, u4, u5, u6, u7;
/* Input */
t0 = btemp[COMP_ID][BLOCK_ID][8*row_id + 0] + 0.5f; // NOTE
u4 = btemp[COMP_ID][BLOCK_ID][8*row_id + 1];
t2 = btemp[COMP_ID][BLOCK_ID][8*row_id + 2];
u6 = btemp[COMP_ID][BLOCK_ID][8*row_id + 3];
t1 = btemp[COMP_ID][BLOCK_ID][8*row_id + 4];
u5 = btemp[COMP_ID][BLOCK_ID][8*row_id + 5];
t3 = btemp[COMP_ID][BLOCK_ID][8*row_id + 6];
u7 = btemp[COMP_ID][BLOCK_ID][8*row_id + 7];
/* Embedded scaled inverse 4-point Type-II DCT */
u0 = t0 + t1;
u1 = t0 - t1;
u3 = t2 + t3;
u2 = (t2 - t3)*(1.4142135623730950488016887242097f) - u3;
t0 = u0 + u3;
t3 = u0 - u3;
t1 = u1 + u2;
t2 = u1 - u2;
/* Embedded scaled inverse 4-point Type-IV DST */
t5 = u5 + u6;
t6 = u5 - u6;
t7 = u4 + u7;
t4 = u4 - u7;
u7 = t7 + t5;
u5 = (t7 - t5)*(1.4142135623730950488016887242097f);
u8 = (t4 + t6)*(1.8477590650225735122563663787936f);
u4 = u8 - t4*(1.0823922002923939687994464107328f);
u6 = u8 - t6*(2.6131259297527530557132863468544f);
t7 = u7;
t6 = t7 - u6;
t5 = t6 + u5;
t4 = t5 - u4;
/* Butterflies */
u0 = t0 + t7;
u7 = t0 - t7;
u6 = t1 + t6;
u1 = t1 - t6;
u2 = t2 + t5;
u5 = t2 - t5;
u4 = t3 + t4;
u3 = t3 - t4;
/* Output */
block[COMP_ID][BLOCK_ID][0*8 + row_id] = u0;
block[COMP_ID][BLOCK_ID][1*8 + row_id] = u1;
block[COMP_ID][BLOCK_ID][2*8 + row_id] = u2;
block[COMP_ID][BLOCK_ID][3*8 + row_id] = u3;
block[COMP_ID][BLOCK_ID][4*8 + row_id] = u4;
block[COMP_ID][BLOCK_ID][5*8 + row_id] = u5;
block[COMP_ID][BLOCK_ID][6*8 + row_id] = u6;
block[COMP_ID][BLOCK_ID][7*8 + row_id] = u7;
}
int16_t get_value(int16_t codebook)
{
const int16_t switch_bits = codebook >> 8;
const int16_t rice_order = codebook & I16(0xf);
const int16_t exp_order = (codebook >> 4) & I16(0xf);
uint32_t b = show_bits(gb, 32);
if (expectEXT(b == 0, false))
return I16(0);
int16_t q = I16(31) - I16(findMSB(b));
if ((b & 0x80000000) != 0) {
skip_bits(gb, 1 + rice_order);
return I16((b & 0x7FFFFFFF) >> (31 - rice_order));
}
if (q <= switch_bits) {
skip_bits(gb, q + rice_order + 1);
return I16((q << rice_order) +
(((b << (q + 1)) >> 1) >> (31 - rice_order)));
}
int16_t bits = exp_order + (q << 1) - switch_bits;
skip_bits(gb, bits);
return I16((b >> (32 - bits)) +
((switch_bits + 1) << rice_order) -
(1 << exp_order));
}
#define TODCCODEBOOK(x) ((x + 1) >> 1)
void read_dc_vals(const uint nb_blocks)
{
int16_t dc, dc_add;
int16_t prev_dc = I16(0), sign = I16(0);
/* Special handling for first block */
dc = get_value(I16(700));
prev_dc = (dc >> 1) ^ -(dc & I16(1));
btemp[COMP_ID][0][0] = prev_dc;
for (uint n = 1; n < nb_blocks; n++) {
if (expectEXT(left_bits(gb) <= 0, false))
break;
uint8_t dc_codebook;
if ((n & 15) == 1)
dc_codebook = uint8_t(100);
else
dc_codebook = dc_cb[min(TODCCODEBOOK(dc), 13 - 1)];
dc = get_value(dc_codebook);
sign = sign ^ dc & int16_t(1);
dc_add = (-sign ^ I16(TODCCODEBOOK(dc))) + sign;
sign = I16(dc_add < 0);
prev_dc += dc_add;
btemp[COMP_ID][n][0] = prev_dc;
}
}
void read_ac_vals(const uint nb_blocks)
{
const uint nb_codes = nb_blocks << 6;
const uint log2_nb_blocks = findMSB(nb_blocks);
const uint block_mask = (1 << log2_nb_blocks) - 1;
int16_t ac, rn, ln;
int16_t ac_codebook = I16(49);
int16_t rn_codebook = I16( 0);
int16_t ln_codebook = I16(66);
int16_t sign;
int16_t val;
for (uint n = nb_blocks; n <= nb_codes;) {
if (expectEXT(left_bits(gb) <= 0, false))
break;
ln = get_value(ln_codebook);
for (uint i = 0; i < ln; i++) {
if (expectEXT(left_bits(gb) <= 0, false))
break;
if (expectEXT(n >= nb_codes, false))
break;
ac = get_value(ac_codebook);
ac_codebook = ac_cb[min(ac, 95 - 1)];
sign = -int16_t(get_bit(gb));
val = ((ac + I16(1)) ^ sign) - sign;
btemp[COMP_ID][n & block_mask][n >> log2_nb_blocks] = val;
n++;
}
if (expectEXT(n >= nb_codes, false))
break;
rn = get_value(rn_codebook);
rn_codebook = rn_cb[min(rn, 28 - 1)];
n += rn + 1;
if (expectEXT(n >= nb_codes, false))
break;
if (expectEXT(left_bits(gb) <= 0, false))
break;
ac = get_value(ac_codebook);
sign = -int16_t(get_bit(gb));
val = ((ac + I16(1)) ^ sign) - sign;
btemp[COMP_ID][n & block_mask][n >> log2_nb_blocks] = val;
ac_codebook = ac_cb[min(ac, 95 - 1)];
ln_codebook = ln_cb[min(ac, 15 - 1)];
n++;
}
}
void main(void)
{
const uint tile_idx = gl_WorkGroupID.y*gl_NumWorkGroups.x + gl_WorkGroupID.x;
TileData td = tile_data[tile_idx];
if (expectEXT(td.pos.x >= frame_size.x, false))
return;
uint64_t pkt_offset = uint64_t(pkt_data) + td.offset;
u8vec2buf hdr_data = u8vec2buf(pkt_offset);
float qscale = float(pack16(hdr_data[0].v.yx)) / 2.0f;
ivec4 size = ivec4(td.size,
pack16(hdr_data[2].v.yx),
pack16(hdr_data[1].v.yx),
pack16(hdr_data[3].v.yx));
size[0] = size[0] - size[1] - size[2] - size[3] - 8;
if (expectEXT(size[0] < 0, false))
return;
const ivec2 offs = td.pos + ivec2(COMP_ID & 1, COMP_ID >> 1);
const uint w = min(tile_size.x, frame_size.x - td.pos.x) / 2;
const uint nb_blocks = w / 8;
const ivec4 comp_offset = ivec4(size[2] + size[1] + size[3],
size[2],
0,
size[2] + size[1]);
if (BLOCK_ID == 0 && ROW_ID == 0) {
init_get_bits(gb, u8buf(pkt_offset + 8 + comp_offset[COMP_ID]),
size[COMP_ID]);
read_dc_vals(nb_blocks);
read_ac_vals(nb_blocks);
}
barrier();
[[unroll]]
for (uint i = gl_LocalInvocationID.x; i < 64; i += gl_WorkGroupSize.x)
block[COMP_ID][BLOCK_ID][i] = (btemp[COMP_ID][BLOCK_ID][scan[i]] / 16384.0) *
(float(qmat[i]) / 295.0) *
idct_8x8_scales[i] * qscale;
barrier();
#ifdef PARALLEL_ROWS
idct8_horiz(ROW_ID);
barrier();
idct8_vert(ROW_ID);
#else
for (uint j = 0; j < 8; j++)
idct8_horiz(j);
barrier();
for (uint j = 0; j < 8; j++)
idct8_vert(j);
#endif
barrier();
[[unroll]]
for (uint i = gl_LocalInvocationID.x; i < 64; i += gl_WorkGroupSize.x)
imageStore(dst,
offs + 2*ivec2(BLOCK_ID*8 + (i & 7), i >> 3),
vec4(block[COMP_ID][BLOCK_ID][i]));
}
|