1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
/*
* FFv1 codec
*
* Copyright (c) 2024 Lynne <dev@lynne.ee>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
struct RangeCoder {
uint64_t bytestream_start;
uint64_t bytestream;
uint64_t bytestream_end;
int low;
int range;
uint16_t outstanding_count;
uint8_t outstanding_byte;
};
#ifdef FULL_RENORM
/* Full renorm version that can handle outstanding_byte == 0xFF */
void renorm_encoder(inout RangeCoder c)
{
int bs_cnt = 0;
u8buf bytestream = u8buf(c.bytestream);
if (c.outstanding_byte == 0xFF) {
c.outstanding_byte = uint8_t(c.low >> 8);
} else if (c.low <= 0xFF00) {
bytestream[bs_cnt++].v = c.outstanding_byte;
uint16_t cnt = c.outstanding_count;
for (; cnt > 0; cnt--)
bytestream[bs_cnt++].v = uint8_t(0xFF);
c.outstanding_count = uint16_t(0);
c.outstanding_byte = uint8_t(c.low >> 8);
} else if (c.low >= 0x10000) {
bytestream[bs_cnt++].v = c.outstanding_byte + uint8_t(1);
uint16_t cnt = c.outstanding_count;
for (; cnt > 0; cnt--)
bytestream[bs_cnt++].v = uint8_t(0x00);
c.outstanding_count = uint16_t(0);
c.outstanding_byte = uint8_t(bitfieldExtract(c.low, 8, 8));
} else {
c.outstanding_count++;
}
c.bytestream += bs_cnt;
c.range <<= 8;
c.low = bitfieldInsert(0, c.low, 8, 8);
}
#else
/* Cannot deal with outstanding_byte == -1 in the name of speed */
void renorm_encoder(inout RangeCoder c)
{
uint16_t oc = c.outstanding_count + uint16_t(1);
int low = c.low;
c.range <<= 8;
c.low = bitfieldInsert(0, low, 8, 8);
if (low > 0xFF00 && low < 0x10000) {
c.outstanding_count = oc;
return;
}
u8buf bs = u8buf(c.bytestream);
uint8_t outstanding_byte = c.outstanding_byte;
c.bytestream = uint64_t(bs) + oc;
c.outstanding_count = uint16_t(0);
c.outstanding_byte = uint8_t(low >> 8);
uint8_t obs = uint8_t(low > 0xFF00);
uint8_t fill = obs - uint8_t(1); /* unsigned underflow */
bs[0].v = outstanding_byte + obs;
for (int i = 1; i < oc; i++)
bs[i].v = fill;
}
#endif
void put_rac_internal(inout RangeCoder c, const int range1, bool bit)
{
#ifdef DEBUG
if (range1 >= c.range)
debugPrintfEXT("Error: range1 >= c.range");
if (range1 <= 0)
debugPrintfEXT("Error: range1 <= 0");
#endif
int ranged = c.range - range1;
c.low += bit ? ranged : 0;
c.range = bit ? range1 : ranged;
if (expectEXT(c.range < 0x100, false))
renorm_encoder(c);
}
void put_rac_direct(inout RangeCoder c, inout uint8_t state, bool bit)
{
put_rac_internal(c, (c.range * state) >> 8, bit);
state = zero_one_state[(uint(bit) << 8) + state];
}
void put_rac(inout RangeCoder c, uint64_t state, bool bit)
{
put_rac_direct(c, u8buf(state).v, bit);
}
/* Equiprobable bit */
void put_rac_equi(inout RangeCoder c, bool bit)
{
put_rac_internal(c, c.range >> 1, bit);
}
void put_rac_terminate(inout RangeCoder c)
{
int range1 = (c.range * 129) >> 8;
#ifdef DEBUG
if (range1 >= c.range)
debugPrintfEXT("Error: range1 >= c.range");
if (range1 <= 0)
debugPrintfEXT("Error: range1 <= 0");
#endif
c.range -= range1;
if (expectEXT(c.range < 0x100, false))
renorm_encoder(c);
}
/* Return the number of bytes written. */
uint32_t rac_terminate(inout RangeCoder c)
{
put_rac_terminate(c);
c.range = uint16_t(0xFF);
c.low += 0xFF;
renorm_encoder(c);
c.range = uint16_t(0xFF);
renorm_encoder(c);
#ifdef DEBUG
if (c.low != 0)
debugPrintfEXT("Error: c.low != 0");
if (c.range < 0x100)
debugPrintfEXT("Error: range < 0x100");
#endif
return uint32_t(uint64_t(c.bytestream) - uint64_t(c.bytestream_start));
}
void rac_init(out RangeCoder r, u8buf data, uint buf_size)
{
r.bytestream_start = uint64_t(data);
r.bytestream = uint64_t(data);
r.bytestream_end = uint64_t(data) + buf_size;
r.low = 0;
r.range = 0xFF00;
r.outstanding_count = uint16_t(0);
r.outstanding_byte = uint8_t(0xFF);
}
/* Decoder */
uint overread = 0;
bool corrupt = false;
void rac_init_dec(out RangeCoder r, u8buf data, uint buf_size)
{
overread = 0;
corrupt = false;
/* Skip priming bytes */
rac_init(r, OFFBUF(u8buf, data, 2), buf_size - 2);
u8vec2 prime = u8vec2buf(data).v;
/* Switch endianness of the priming bytes */
r.low = pack16(prime.yx);
if (r.low >= 0xFF00) {
r.low = 0xFF00;
r.bytestream_end = uint64_t(data) + 2;
}
}
void refill(inout RangeCoder c)
{
c.range <<= 8;
c.low <<= 8;
if (expectEXT(c.bytestream < c.bytestream_end, false)) {
c.low |= u8buf(c.bytestream).v;
c.bytestream++;
} else {
overread++;
}
}
bool get_rac_internal(inout RangeCoder c, const int range1)
{
int ranged = c.range - range1;
bool bit = c.low >= ranged;
c.low -= bit ? ranged : 0;
c.range = (bit ? 0 : ranged) + (bit ? range1 : 0);
if (expectEXT(c.range < 0x100, false))
refill(c);
return bit;
}
bool get_rac_direct(inout RangeCoder c, inout uint8_t state)
{
bool bit = get_rac_internal(c, c.range * state >> 8);
state = zero_one_state[state + (bit ? 256 : 0)];
return bit;
}
bool get_rac(inout RangeCoder c, uint64_t state)
{
return get_rac_direct(c, u8buf(state).v);
}
bool get_rac_equi(inout RangeCoder c)
{
return get_rac_internal(c, c.range >> 1);
}
|