1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
|
/*
* Copyright (c) 2017 Richard Ling
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* Normalize RGB video (aka histogram stretching, contrast stretching).
* See: https://en.wikipedia.org/wiki/Normalization_(image_processing)
*
* For each channel of each frame, the filter computes the input range and maps
* it linearly to the user-specified output range. The output range defaults
* to the full dynamic range from pure black to pure white.
*
* Naively maximising the dynamic range of each frame of video in isolation
* may cause flickering (rapid changes in brightness of static objects in the
* scene) when small dark or bright objects enter or leave the scene. This
* filter can apply temporal smoothing to the input range to reduce flickering.
* Temporal smoothing is similar to the auto-exposure (automatic gain control)
* on a video camera, which performs the same function; and, like a video
* camera, it may cause a period of over- or under-exposure of the video.
*
* The filter can normalize the R,G,B channels independently, which may cause
* color shifting, or link them together as a single channel, which prevents
* color shifting. More precisely, linked normalization preserves hue (as it's
* defined in HSV/HSL color spaces) while independent normalization does not.
* Independent normalization can be used to remove color casts, such as the
* blue cast from underwater video, restoring more natural colors. The filter
* can also combine independent and linked normalization in any ratio.
*
* Finally the overall strength of the filter can be adjusted, from no effect
* to full normalization.
*
* The 5 AVOptions are:
* blackpt, Colors which define the output range. The minimum input value
* whitept is mapped to the blackpt. The maximum input value is mapped to
* the whitept. The defaults are black and white respectively.
* Specifying white for blackpt and black for whitept will give
* color-inverted, normalized video. Shades of grey can be used
* to reduce the dynamic range (contrast). Specifying saturated
* colors here can create some interesting effects.
*
* smoothing The amount of temporal smoothing, expressed in frames (>=0).
* the minimum and maximum input values of each channel are
* smoothed using a rolling average over the current frame and
* that many previous frames of video. Defaults to 0 (no temporal
* smoothing).
*
* independence
* Controls the ratio of independent (color shifting) channel
* normalization to linked (color preserving) normalization. 0.0
* is fully linked, 1.0 is fully independent. Defaults to fully
* independent.
*
* strength Overall strength of the filter. 1.0 is full strength. 0.0 is
* a rather expensive no-op. Values in between can give a gentle
* boost to low-contrast video without creating an artificial
* over-processed look. The default is full strength.
*/
#include "libavutil/intreadwrite.h"
#include "libavutil/mem.h"
#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "avfilter.h"
#include "drawutils.h"
#include "filters.h"
#include "video.h"
typedef struct NormalizeHistory {
uint16_t *history; // History entries.
uint64_t history_sum; // Sum of history entries.
} NormalizeHistory;
typedef struct NormalizeLocal {
uint16_t in; // Original input byte value for this frame.
float smoothed; // Smoothed input value [0,255].
float out; // Output value [0,255]
} NormalizeLocal;
typedef struct NormalizeContext {
const AVClass *class;
// Storage for the corresponding AVOptions
uint8_t blackpt[4];
uint8_t whitept[4];
int smoothing;
float independence;
float strength;
uint8_t co[4]; // Offsets to R,G,B,A bytes respectively in each pixel
int depth;
int sblackpt[4];
int swhitept[4];
int num_components; // Number of components in the pixel format
int step;
int history_len; // Number of frames to average; based on smoothing factor
int frame_num; // Increments on each frame, starting from 0.
// Per-extremum, per-channel history, for temporal smoothing.
NormalizeHistory min[3], max[3]; // Min and max for each channel in {R,G,B}.
uint16_t *history_mem; // Single allocation for above history entries
uint16_t lut[3][65536]; // Lookup table
void (*find_min_max)(struct NormalizeContext *s, AVFrame *in, NormalizeLocal min[3], NormalizeLocal max[3]);
void (*process)(struct NormalizeContext *s, AVFrame *in, AVFrame *out);
} NormalizeContext;
#define OFFSET(x) offsetof(NormalizeContext, x)
#define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
#define FLAGSR AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
static const AVOption normalize_options[] = {
{ "blackpt", "output color to which darkest input color is mapped", OFFSET(blackpt), AV_OPT_TYPE_COLOR, { .str = "black" }, 0, 0, FLAGSR },
{ "whitept", "output color to which brightest input color is mapped", OFFSET(whitept), AV_OPT_TYPE_COLOR, { .str = "white" }, 0, 0, FLAGSR },
{ "smoothing", "amount of temporal smoothing of the input range, to reduce flicker", OFFSET(smoothing), AV_OPT_TYPE_INT, {.i64=0}, 0, INT_MAX/8, FLAGS },
{ "independence", "proportion of independent to linked channel normalization", OFFSET(independence), AV_OPT_TYPE_FLOAT, {.dbl=1.0}, 0.0, 1.0, FLAGSR },
{ "strength", "strength of filter, from no effect to full normalization", OFFSET(strength), AV_OPT_TYPE_FLOAT, {.dbl=1.0}, 0.0, 1.0, FLAGSR },
{ NULL }
};
AVFILTER_DEFINE_CLASS(normalize);
static void find_min_max(NormalizeContext *s, AVFrame *in, NormalizeLocal min[3], NormalizeLocal max[3])
{
for (int c = 0; c < 3; c++)
min[c].in = max[c].in = in->data[0][s->co[c]];
for (int y = 0; y < in->height; y++) {
uint8_t *inp = in->data[0] + y * in->linesize[0];
for (int x = 0; x < in->width; x++) {
for (int c = 0; c < 3; c++) {
min[c].in = FFMIN(min[c].in, inp[s->co[c]]);
max[c].in = FFMAX(max[c].in, inp[s->co[c]]);
}
inp += s->step;
}
}
}
static void process(NormalizeContext *s, AVFrame *in, AVFrame *out)
{
for (int y = 0; y < in->height; y++) {
uint8_t *inp = in->data[0] + y * in->linesize[0];
uint8_t *outp = out->data[0] + y * out->linesize[0];
for (int x = 0; x < in->width; x++) {
for (int c = 0; c < 3; c++)
outp[s->co[c]] = s->lut[c][inp[s->co[c]]];
if (s->num_components == 4)
// Copy alpha as-is.
outp[s->co[3]] = inp[s->co[3]];
inp += s->step;
outp += s->step;
}
}
}
static void find_min_max_planar(NormalizeContext *s, AVFrame *in, NormalizeLocal min[3], NormalizeLocal max[3])
{
min[0].in = max[0].in = in->data[2][0];
min[1].in = max[1].in = in->data[0][0];
min[2].in = max[2].in = in->data[1][0];
for (int y = 0; y < in->height; y++) {
uint8_t *inrp = in->data[2] + y * in->linesize[2];
uint8_t *ingp = in->data[0] + y * in->linesize[0];
uint8_t *inbp = in->data[1] + y * in->linesize[1];
for (int x = 0; x < in->width; x++) {
min[0].in = FFMIN(min[0].in, inrp[x]);
max[0].in = FFMAX(max[0].in, inrp[x]);
min[1].in = FFMIN(min[1].in, ingp[x]);
max[1].in = FFMAX(max[1].in, ingp[x]);
min[2].in = FFMIN(min[2].in, inbp[x]);
max[2].in = FFMAX(max[2].in, inbp[x]);
}
}
}
static void process_planar(NormalizeContext *s, AVFrame *in, AVFrame *out)
{
for (int y = 0; y < in->height; y++) {
uint8_t *inrp = in->data[2] + y * in->linesize[2];
uint8_t *ingp = in->data[0] + y * in->linesize[0];
uint8_t *inbp = in->data[1] + y * in->linesize[1];
uint8_t *inap = in->data[3] + y * in->linesize[3];
uint8_t *outrp = out->data[2] + y * out->linesize[2];
uint8_t *outgp = out->data[0] + y * out->linesize[0];
uint8_t *outbp = out->data[1] + y * out->linesize[1];
uint8_t *outap = out->data[3] + y * out->linesize[3];
for (int x = 0; x < in->width; x++) {
outrp[x] = s->lut[0][inrp[x]];
outgp[x] = s->lut[1][ingp[x]];
outbp[x] = s->lut[2][inbp[x]];
if (s->num_components == 4)
outap[x] = inap[x];
}
}
}
static void find_min_max_16(NormalizeContext *s, AVFrame *in, NormalizeLocal min[3], NormalizeLocal max[3])
{
for (int c = 0; c < 3; c++)
min[c].in = max[c].in = AV_RN16(in->data[0] + 2 * s->co[c]);
for (int y = 0; y < in->height; y++) {
uint16_t *inp = (uint16_t *)(in->data[0] + y * in->linesize[0]);
for (int x = 0; x < in->width; x++) {
for (int c = 0; c < 3; c++) {
min[c].in = FFMIN(min[c].in, inp[s->co[c]]);
max[c].in = FFMAX(max[c].in, inp[s->co[c]]);
}
inp += s->step;
}
}
}
static void process_16(NormalizeContext *s, AVFrame *in, AVFrame *out)
{
for (int y = 0; y < in->height; y++) {
uint16_t *inp = (uint16_t *)(in->data[0] + y * in->linesize[0]);
uint16_t *outp = (uint16_t *)(out->data[0] + y * out->linesize[0]);
for (int x = 0; x < in->width; x++) {
for (int c = 0; c < 3; c++)
outp[s->co[c]] = s->lut[c][inp[s->co[c]]];
if (s->num_components == 4)
// Copy alpha as-is.
outp[s->co[3]] = inp[s->co[3]];
inp += s->step;
outp += s->step;
}
}
}
static void find_min_max_planar_16(NormalizeContext *s, AVFrame *in, NormalizeLocal min[3], NormalizeLocal max[3])
{
min[0].in = max[0].in = AV_RN16(in->data[2]);
min[1].in = max[1].in = AV_RN16(in->data[0]);
min[2].in = max[2].in = AV_RN16(in->data[1]);
for (int y = 0; y < in->height; y++) {
uint16_t *inrp = (uint16_t *)(in->data[2] + y * in->linesize[2]);
uint16_t *ingp = (uint16_t *)(in->data[0] + y * in->linesize[0]);
uint16_t *inbp = (uint16_t *)(in->data[1] + y * in->linesize[1]);
for (int x = 0; x < in->width; x++) {
min[0].in = FFMIN(min[0].in, inrp[x]);
max[0].in = FFMAX(max[0].in, inrp[x]);
min[1].in = FFMIN(min[1].in, ingp[x]);
max[1].in = FFMAX(max[1].in, ingp[x]);
min[2].in = FFMIN(min[2].in, inbp[x]);
max[2].in = FFMAX(max[2].in, inbp[x]);
}
}
}
static void process_planar_16(NormalizeContext *s, AVFrame *in, AVFrame *out)
{
for (int y = 0; y < in->height; y++) {
uint16_t *inrp = (uint16_t *)(in->data[2] + y * in->linesize[2]);
uint16_t *ingp = (uint16_t *)(in->data[0] + y * in->linesize[0]);
uint16_t *inbp = (uint16_t *)(in->data[1] + y * in->linesize[1]);
uint16_t *inap = (uint16_t *)(in->data[3] + y * in->linesize[3]);
uint16_t *outrp = (uint16_t *)(out->data[2] + y * out->linesize[2]);
uint16_t *outgp = (uint16_t *)(out->data[0] + y * out->linesize[0]);
uint16_t *outbp = (uint16_t *)(out->data[1] + y * out->linesize[1]);
uint16_t *outap = (uint16_t *)(out->data[3] + y * out->linesize[3]);
for (int x = 0; x < in->width; x++) {
outrp[x] = s->lut[0][inrp[x]];
outgp[x] = s->lut[1][ingp[x]];
outbp[x] = s->lut[2][inbp[x]];
if (s->num_components == 4)
outap[x] = inap[x];
}
}
}
// This function is the main guts of the filter. Normalizes the input frame
// into the output frame. The frames are known to have the same dimensions
// and pixel format.
static void normalize(NormalizeContext *s, AVFrame *in, AVFrame *out)
{
// Per-extremum, per-channel local variables.
NormalizeLocal min[3], max[3]; // Min and max for each channel in {R,G,B}.
float rgb_min_smoothed; // Min input range for linked normalization
float rgb_max_smoothed; // Max input range for linked normalization
int c;
// First, scan the input frame to find, for each channel, the minimum
// (min.in) and maximum (max.in) values present in the channel.
s->find_min_max(s, in, min, max);
// Next, for each channel, push min.in and max.in into their respective
// histories, to determine the min.smoothed and max.smoothed for this frame.
{
int history_idx = s->frame_num % s->history_len;
// Assume the history is not yet full; num_history_vals is the number
// of frames received so far including the current frame.
int num_history_vals = s->frame_num + 1;
if (s->frame_num >= s->history_len) {
//The history is full; drop oldest value and cap num_history_vals.
for (c = 0; c < 3; c++) {
s->min[c].history_sum -= s->min[c].history[history_idx];
s->max[c].history_sum -= s->max[c].history[history_idx];
}
num_history_vals = s->history_len;
}
// For each extremum, update history_sum and calculate smoothed value
// as the rolling average of the history entries.
for (c = 0; c < 3; c++) {
s->min[c].history_sum += (s->min[c].history[history_idx] = min[c].in);
min[c].smoothed = s->min[c].history_sum / (float)num_history_vals;
s->max[c].history_sum += (s->max[c].history[history_idx] = max[c].in);
max[c].smoothed = s->max[c].history_sum / (float)num_history_vals;
}
}
// Determine the input range for linked normalization. This is simply the
// minimum of the per-channel minimums, and the maximum of the per-channel
// maximums.
rgb_min_smoothed = FFMIN3(min[0].smoothed, min[1].smoothed, min[2].smoothed);
rgb_max_smoothed = FFMAX3(max[0].smoothed, max[1].smoothed, max[2].smoothed);
// Now, process each channel to determine the input and output range and
// build the lookup tables.
for (c = 0; c < 3; c++) {
int in_val;
// Adjust the input range for this channel [min.smoothed,max.smoothed]
// by mixing in the correct proportion of the linked normalization
// input range [rgb_min_smoothed,rgb_max_smoothed].
min[c].smoothed = (min[c].smoothed * s->independence)
+ (rgb_min_smoothed * (1.0f - s->independence));
max[c].smoothed = (max[c].smoothed * s->independence)
+ (rgb_max_smoothed * (1.0f - s->independence));
// Calculate the output range [min.out,max.out] as a ratio of the full-
// strength output range [blackpt,whitept] and the original input range
// [min.in,max.in], based on the user-specified filter strength.
min[c].out = (s->sblackpt[c] * s->strength)
+ (min[c].in * (1.0f - s->strength));
max[c].out = (s->swhitept[c] * s->strength)
+ (max[c].in * (1.0f - s->strength));
// Now, build a lookup table which linearly maps the adjusted input range
// [min.smoothed,max.smoothed] to the output range [min.out,max.out].
// Perform the linear interpolation for each x:
// lut[x] = (int)(float(x - min.smoothed) * scale + max.out + 0.5)
// where scale = (max.out - min.out) / (max.smoothed - min.smoothed)
if (min[c].smoothed == max[c].smoothed) {
// There is no dynamic range to expand. No mapping for this channel.
for (in_val = min[c].in; in_val <= max[c].in; in_val++)
s->lut[c][in_val] = min[c].out;
} else {
// We must set lookup values for all values in the original input
// range [min.in,max.in]. Since the original input range may be
// larger than [min.smoothed,max.smoothed], some output values may
// fall outside the [0,255] dynamic range. We need to clamp them.
float scale = (max[c].out - min[c].out) / (max[c].smoothed - min[c].smoothed);
for (in_val = min[c].in; in_val <= max[c].in; in_val++) {
int out_val = (in_val - min[c].smoothed) * scale + min[c].out + 0.5f;
out_val = av_clip_uintp2_c(out_val, s->depth);
s->lut[c][in_val] = out_val;
}
}
}
// Finally, process the pixels of the input frame using the lookup tables.
s->process(s, in, out);
s->frame_num++;
}
// Now we define all the functions accessible from the ff_vf_normalize class,
// which is ffmpeg's interface to our filter. See doc/filter_design.txt and
// doc/writing_filters.txt for descriptions of what these interface functions
// are expected to do.
// The pixel formats that our filter supports. We should be able to process
// any 8-bit RGB formats. 16-bit support might be useful one day.
static const enum AVPixelFormat pixel_fmts[] = {
AV_PIX_FMT_RGB24,
AV_PIX_FMT_BGR24,
AV_PIX_FMT_ARGB,
AV_PIX_FMT_RGBA,
AV_PIX_FMT_ABGR,
AV_PIX_FMT_BGRA,
AV_PIX_FMT_0RGB,
AV_PIX_FMT_RGB0,
AV_PIX_FMT_0BGR,
AV_PIX_FMT_BGR0,
AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48,
AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64,
AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10,
AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16,
AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16,
AV_PIX_FMT_NONE
};
// At this point we know the pixel format used for both input and output. We
// can also access the frame rate of the input video and allocate some memory
// appropriately
static int config_input(AVFilterLink *inlink)
{
NormalizeContext *s = inlink->dst->priv;
// Store offsets to R,G,B,A bytes respectively in each pixel
const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
int c, planar, scale;
ff_fill_rgba_map(s->co, inlink->format);
s->depth = desc->comp[0].depth;
scale = 1 << (s->depth - 8);
s->num_components = desc->nb_components;
s->step = av_get_padded_bits_per_pixel(desc) >> (3 + (s->depth > 8));
// Convert smoothing value to history_len (a count of frames to average,
// must be at least 1). Currently this is a direct assignment, but the
// smoothing value was originally envisaged as a number of seconds. In
// future it would be nice to set history_len using a number of seconds,
// but VFR video is currently an obstacle to doing so.
s->history_len = s->smoothing + 1;
// Allocate the history buffers -- there are 6 -- one for each extrema.
// s->smoothing is limited to INT_MAX/8, so that (s->history_len * 6)
// can't overflow on 32bit causing a too-small allocation.
s->history_mem = av_malloc(s->history_len * 6 * sizeof(*s->history_mem));
if (s->history_mem == NULL)
return AVERROR(ENOMEM);
for (c = 0; c < 3; c++) {
s->min[c].history = s->history_mem + (c*2) * s->history_len;
s->max[c].history = s->history_mem + (c*2+1) * s->history_len;
s->sblackpt[c] = scale * s->blackpt[c] + (s->blackpt[c] & (1 << (s->depth - 8)));
s->swhitept[c] = scale * s->whitept[c] + (s->whitept[c] & (1 << (s->depth - 8)));
}
planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR;
if (s->depth <= 8) {
s->find_min_max = planar ? find_min_max_planar : find_min_max;
s->process = planar? process_planar : process;
} else {
s->find_min_max = planar ? find_min_max_planar_16 : find_min_max_16;
s->process = planar? process_planar_16 : process_16;
}
return 0;
}
// Free any memory allocations here
static av_cold void uninit(AVFilterContext *ctx)
{
NormalizeContext *s = ctx->priv;
av_freep(&s->history_mem);
}
// This function is pretty much standard from doc/writing_filters.txt. It
// tries to do in-place filtering where possible, only allocating a new output
// frame when absolutely necessary.
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
{
AVFilterContext *ctx = inlink->dst;
AVFilterLink *outlink = ctx->outputs[0];
NormalizeContext *s = ctx->priv;
AVFrame *out;
// Set 'direct' if we can modify the input frame in-place. Otherwise we
// need to retrieve a new frame from the output link.
int direct = av_frame_is_writable(in) && !ctx->is_disabled;
if (direct) {
out = in;
} else {
out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
if (!out) {
av_frame_free(&in);
return AVERROR(ENOMEM);
}
av_frame_copy_props(out, in);
}
// Now we've got the input and output frames (which may be the same frame)
// perform the filtering with our custom function.
normalize(s, in, out);
if (ctx->is_disabled) {
av_frame_free(&out);
return ff_filter_frame(outlink, in);
}
if (!direct)
av_frame_free(&in);
return ff_filter_frame(outlink, out);
}
static const AVFilterPad inputs[] = {
{
.name = "default",
.type = AVMEDIA_TYPE_VIDEO,
.filter_frame = filter_frame,
.config_props = config_input,
},
};
const FFFilter ff_vf_normalize = {
.p.name = "normalize",
.p.description = NULL_IF_CONFIG_SMALL("Normalize RGB video."),
.p.priv_class = &normalize_class,
.p.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL,
.priv_size = sizeof(NormalizeContext),
.uninit = uninit,
FILTER_INPUTS(inputs),
FILTER_OUTPUTS(ff_video_default_filterpad),
FILTER_PIXFMTS_ARRAY(pixel_fmts),
.process_command = ff_filter_process_command,
};
|