1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<!-- This HTML file has been created by texi2html 1.52
from fftw.texi on 24 March 2003 -->
<TITLE>FFTW - FFTW Reference</TITLE>
</HEAD>
<BODY TEXT="#000000" BGCOLOR="#FFFFFF">
Go to the <A HREF="fftw_1.html">first</A>, <A HREF="fftw_2.html">previous</A>, <A HREF="fftw_4.html">next</A>, <A HREF="fftw_10.html">last</A> section, <A HREF="fftw_toc.html">table of contents</A>.
<P><HR><P>
<H1><A NAME="SEC16">FFTW Reference</A></H1>
<P>
This chapter provides a complete reference for all sequential (i.e.,
one-processor) FFTW functions. We first define the data types upon
which FFTW operates, that is, real, complex, and "halfcomplex" numbers
(see Section <A HREF="fftw_3.html#SEC17">Data Types</A>). Then, in four sections, we explain the FFTW
program interface for complex one-dimensional transforms
(see Section <A HREF="fftw_3.html#SEC18">One-dimensional Transforms Reference</A>), complex
multi-dimensional transforms (see Section <A HREF="fftw_3.html#SEC24">Multi-dimensional Transforms Reference</A>), and real one-dimensional transforms (see Section <A HREF="fftw_3.html#SEC29">Real One-dimensional Transforms Reference</A>), real multi-dimensional
transforms (see Section <A HREF="fftw_3.html#SEC34">Real Multi-dimensional Transforms Reference</A>).
Section <A HREF="fftw_3.html#SEC41">Wisdom Reference</A> describes the <CODE>wisdom</CODE> mechanism for
exporting and importing plans. Finally, Section <A HREF="fftw_3.html#SEC45">Memory Allocator Reference</A> describes how to change FFTW's default memory allocator.
For parallel transforms, See Section <A HREF="fftw_4.html#SEC47">Parallel FFTW</A>.
<H2><A NAME="SEC17">Data Types</A></H2>
<P>
<A NAME="IDX98"></A>
<A NAME="IDX99"></A>
<A NAME="IDX100"></A>
<P>
The routines in the FFTW package use three main kinds of data types.
<EM>Real</EM> and <EM>complex</EM> numbers should be already known to the
reader. We also use the term <EM>halfcomplex</EM> to describe complex
arrays in a special packed format used by the one-dimensional real
transforms (taking advantage of the <EM>hermitian</EM> symmetry that arises
in those cases).
<P>
By including <CODE><fftw.h></CODE> or <CODE><rfftw.h></CODE>, you will have access
to the following definitions:
<PRE>
typedef double fftw_real;
typedef struct {
fftw_real re, im;
} fftw_complex;
#define c_re(c) ((c).re)
#define c_im(c) ((c).im)
</PRE>
<P>
<A NAME="IDX101"></A>
<A NAME="IDX102"></A>
<P>
All FFTW operations are performed on the <CODE>fftw_real</CODE> and
<CODE>fftw_complex</CODE> data types. For <CODE>fftw_complex</CODE> numbers, the
two macros <CODE>c_re</CODE> and <CODE>c_im</CODE> retrieve, respectively, the real
and imaginary parts of the number.
<P>
A <EM>real array</EM> is an array of real numbers. A <EM>complex array</EM>
is an array of complex numbers. A one-dimensional array X of
n complex numbers is <EM>hermitian</EM> if the following property
holds:
for all 0 <= i < n, we have X<sub>i</sub> = conj(X<sub>n-i</sub>)}.
Hermitian arrays are relevant to FFTW because the Fourier transform of a
real array is hermitian.
<P>
Because of its symmetry, a hermitian array can be stored in half the
space of a complex array of the same size. FFTW's one-dimensional real
transforms store hermitian arrays as <EM>halfcomplex</EM> arrays. A
halfcomplex array of size n is
<A NAME="IDX103"></A>
a one-dimensional array of n <CODE>fftw_real</CODE> numbers. A
hermitian array X in stored into a halfcomplex array Y as
follows.
For all integers i such that 0 <= i <= n / 2, we have
Y<sub>i</sub> = Re(X<sub>i</sub>). For all integers i such that 0
< i < n / 2, we have Y<sub>n-i</sub> = Im(X<sub>i</sub>).
<P>
We now illustrate halfcomplex storage for n = 4 and n = 5,
since the scheme depends on the parity of n. Let n = 4.
In this case, we have
Y<sub>0</sub> = Re(X<sub>0</sub>), Y<sub>1</sub> = Re(X<sub>1</sub>),
Y<sub>2</sub> = Re(X<sub>2</sub>), and Y<sub>3</sub> = Im(X<sub>1</sub>).
Let now n = 5. In this case, we have
Y<sub>0</sub> = Re(X<sub>0</sub>), Y<sub>1</sub> = Re(X<sub>1</sub>),
Y<sub>2</sub> = Re(X<sub>2</sub>), Y<sub>3</sub> = Im(X<sub>2</sub>),
and Y<sub>4</sub> = Im(X<sub>1</sub>).
<P>
<A NAME="IDX104"></A>
By default, the type <CODE>fftw_real</CODE> equals the C type <CODE>double</CODE>.
To work in single precision rather than double precision, <CODE>#define</CODE>
the symbol <CODE>FFTW_ENABLE_FLOAT</CODE> in <CODE>fftw.h</CODE> and then recompile
the library. On Unix systems, you can instead use <CODE>configure
--enable-float</CODE> at installation time (see Section <A HREF="fftw_6.html#SEC66">Installation and Customization</A>).
<A NAME="IDX105"></A>
<A NAME="IDX106"></A>
<P>
In version 1 of FFTW, the data types were called <CODE>FFTW_REAL</CODE> and
<CODE>FFTW_COMPLEX</CODE>. We changed the capitalization for consistency with
the rest of FFTW's conventions. The old names are still supported, but
their use is deprecated.
<A NAME="IDX107"></A>
<A NAME="IDX108"></A>
<H2><A NAME="SEC18">One-dimensional Transforms Reference</A></H2>
<P>
The one-dimensional complex routines are generally prefixed with
<CODE>fftw_</CODE>. Programs using FFTW should be linked with <CODE>-lfftw
-lm</CODE> on Unix systems, or with the FFTW and standard math libraries in
general.
<H3><A NAME="SEC19">Plan Creation for One-dimensional Transforms</A></H3>
<PRE>
#include <fftw.h>
fftw_plan fftw_create_plan(int n, fftw_direction dir,
int flags);
fftw_plan fftw_create_plan_specific(int n, fftw_direction dir,
int flags,
fftw_complex *in, int istride,
fftw_complex *out, int ostride);
</PRE>
<P>
<A NAME="IDX109"></A>
<A NAME="IDX110"></A>
<A NAME="IDX111"></A>
<A NAME="IDX112"></A>
<P>
The function <CODE>fftw_create_plan</CODE> creates a plan, which is
a data structure containing all the information that <CODE>fftw</CODE>
needs in order to compute the 1D Fourier transform. You can
create as many plans as you need, but only one plan for a given
array size is required (a plan can be reused many times).
<P>
<CODE>fftw_create_plan</CODE> returns a valid plan, or <CODE>NULL</CODE>
if, for some reason, the plan can't be created. In the
default installation, this cannot happen, but it is possible
to configure FFTW in such a way that some input sizes are
forbidden, and FFTW cannot create a plan.
<P>
The <CODE>fftw_create_plan_specific</CODE> variant takes as additional
arguments specific input/output arrays and their strides. For the last
four arguments, you should pass the arrays and strides that you will
eventually be passing to <CODE>fftw</CODE>. The resulting plans will be
optimized for those arrays and strides, although they may be used on
other arrays as well. Note: the contents of the in and out arrays are
<EM>destroyed</EM> by the specific planner (the initial contents are
ignored, so the arrays need not have been initialized).
<H4>Arguments</H4>
<UL>
<LI>
<CODE>n</CODE> is the size of the transform. It can be
any positive integer.
<UL>
<LI>
FFTW is best at handling sizes of the form
2<SUP>a</SUP> 3<SUP>b</SUP> 5<SUP>c</SUP> 7<SUP>d</SUP>
11<SUP>e</SUP> 13<SUP>f</SUP>,
where e+f is either 0 or
1, and the other exponents are arbitrary. Other sizes are
computed by means of a slow, general-purpose routine (which nevertheless
retains
O(n lg n)
performance, even for prime sizes). (It is
possible to customize FFTW for different array sizes.
See Section <A HREF="fftw_6.html#SEC66">Installation and Customization</A>, for more information.) Transforms
whose sizes are powers of 2 are especially fast.
</UL>
<LI>
<CODE>dir</CODE> is the sign of the exponent in the formula that
defines the Fourier transform. It can be -1 or +1.
The aliases <CODE>FFTW_FORWARD</CODE> and <CODE>FFTW_BACKWARD</CODE>
are provided, where <CODE>FFTW_FORWARD</CODE> stands for -1.
<LI>
<A NAME="IDX113"></A>
<CODE>flags</CODE> is a boolean OR (<SAMP>`|'</SAMP>) of zero or more of the following:
<UL>
<LI>
<CODE>FFTW_MEASURE</CODE>: this flag tells FFTW to find the optimal plan by
actually <EM>computing</EM> several FFTs and measuring their
execution time. Depending on the installation, this can take some
time. <A NAME="DOCF2" HREF="fftw_foot.html#FOOT2">(2)</A>
<LI>
<CODE>FFTW_ESTIMATE</CODE>: do not run any FFT and provide a "reasonable"
plan (for a RISC processor with many registers). If neither
<CODE>FFTW_ESTIMATE</CODE> nor <CODE>FFTW_MEASURE</CODE> is provided, the default is
<CODE>FFTW_ESTIMATE</CODE>.
<LI>
<CODE>FFTW_OUT_OF_PLACE</CODE>: produce a plan assuming that the input and
output arrays will be distinct (this is the default).
<A NAME="IDX114"></A>
<LI>
<A NAME="IDX115"></A>
<CODE>FFTW_IN_PLACE</CODE>: produce a plan assuming that you want the output
in the input array. The algorithm used is not necessarily in place:
FFTW is able to compute true in-place transforms only for small values
of <CODE>n</CODE>. If FFTW is not able to compute the transform in-place, it
will allocate a temporary array (unless you provide one yourself),
compute the transform out of place, and copy the result back.
<EM>Warning: This option changes the meaning of some parameters of
<CODE>fftw</CODE></EM> (see Section <A HREF="fftw_3.html#SEC21">Computing the One-dimensional Transform</A>).
The in-place option is mainly provided for people who want to write
their own in-place multi-dimensional Fourier transform, using FFTW as a
base. For example, consider a three-dimensional <CODE>n * n * n</CODE>
transform. An out-of-place algorithm will need another array (which may
be huge). However, FFTW can compute the in-place transform along
each dimension using only a temporary array of size <CODE>n</CODE>.
Moreover, if FFTW happens to be able to compute the transform truly
in-place, no temporary array and no copying are needed. As distributed,
FFTW `knows' how to compute in-place transforms of size 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 32 and 64.
The default mode of operation is <CODE>FFTW_OUT_OF_PLACE</CODE>.
<LI>
<A NAME="IDX116"></A>
<CODE>FFTW_USE_WISDOM</CODE>: use any <CODE>wisdom</CODE> that is available to help
in the creation of the plan. (See Section <A HREF="fftw_2.html#SEC13">Words of Wisdom</A>.)
This can greatly speed the creation of plans, especially with the
<CODE>FFTW_MEASURE</CODE> option. <CODE>FFTW_ESTIMATE</CODE> plans can also take
advantage of <CODE>wisdom</CODE> to produce a more optimal plan (based on past
measurements) than the estimation heuristic would normally
generate. When the <CODE>FFTW_MEASURE</CODE> option is used, new <CODE>wisdom</CODE>
will also be generated if the current transform size is not completely
understood by existing <CODE>wisdom</CODE>.
</UL>
<LI>
<CODE>in</CODE>, <CODE>out</CODE>, <CODE>istride</CODE>, <CODE>ostride</CODE> (only for
<CODE>fftw_create_plan_specific</CODE>): see corresponding arguments in the
description of <CODE>fftw</CODE>. (See Section <A HREF="fftw_3.html#SEC21">Computing the One-dimensional Transform</A>.) In particular, the <CODE>out</CODE> and <CODE>ostride</CODE>
parameters have the same special meaning for <CODE>FFTW_IN_PLACE</CODE>
transforms as they have for <CODE>fftw</CODE>.
</UL>
<H3><A NAME="SEC20">Discussion on Specific Plans</A></H3>
<P>
<A NAME="IDX117"></A>
We recommend the use of the specific planners, even in cases where you
will be transforming arrays different from those passed to the specific
planners, as they confer the following advantages:
<UL>
<LI>
The resulting plans will be optimized for your specific arrays and
strides. This may or may not make a significant difference, but it
certainly doesn't hurt. (The ordinary planner does its planning based
upon a stride-one temporary array that it allocates.)
<LI>
Less intermediate storage is required during the planning process. (The
ordinary planner uses O(<CODE>N</CODE>) temporary storage, where <CODE>N</CODE> is
the maximum dimension, while it is creating the plan.)
<LI>
For multi-dimensional transforms, new parameters become accessible for
optimization by the planner. (Since multi-dimensional arrays can be
very large, we don't dare to allocate one in the ordinary planner for
experimentation. This prevents us from doing certain optimizations
that can yield dramatic improvements in some cases.)
</UL>
<P>
On the other hand, note that <EM>the specific planner destroys the
contents of the <CODE>in</CODE> and <CODE>out</CODE> arrays</EM>.
<H3><A NAME="SEC21">Computing the One-dimensional Transform</A></H3>
<PRE>
#include <fftw.h>
void fftw(fftw_plan plan, int howmany,
fftw_complex *in, int istride, int idist,
fftw_complex *out, int ostride, int odist);
void fftw_one(fftw_plan plan, fftw_complex *in,
fftw_complex *out);
</PRE>
<P>
<A NAME="IDX118"></A>
<A NAME="IDX119"></A>
<P>
The function <CODE>fftw</CODE> computes the one-dimensional Fourier transform,
using a plan created by <CODE>fftw_create_plan</CODE> (See Section <A HREF="fftw_3.html#SEC19">Plan Creation for One-dimensional Transforms</A>.) The function
<CODE>fftw_one</CODE> provides a simplified interface for the common case of
single input array of stride 1.
<A NAME="IDX120"></A>
<H4>Arguments</H4>
<UL>
<LI>
<CODE>plan</CODE> is the plan created by <CODE>fftw_create_plan</CODE>
(see Section <A HREF="fftw_3.html#SEC19">Plan Creation for One-dimensional Transforms</A>).
<LI>
<CODE>howmany</CODE> is the number of transforms <CODE>fftw</CODE> will compute.
It is faster to tell FFTW to compute many transforms, instead of
simply calling <CODE>fftw</CODE> many times.
<LI>
<CODE>in</CODE>, <CODE>istride</CODE> and <CODE>idist</CODE> describe the input array(s).
There are <CODE>howmany</CODE> input arrays; the first one is pointed to by
<CODE>in</CODE>, the second one is pointed to by <CODE>in + idist</CODE>, and so on,
up to <CODE>in + (howmany - 1) * idist</CODE>. Each input array consists of
complex numbers (see Section <A HREF="fftw_3.html#SEC17">Data Types</A>), which are not necessarily
contiguous in memory. Specifically, <CODE>in[0]</CODE> is the first element
of the first array, <CODE>in[istride]</CODE> is the second element of the
first array, and so on. In general, the <CODE>i</CODE>-th element of the
<CODE>j</CODE>-th input array will be in position <CODE>in[i * istride + j *
idist]</CODE>.
<LI>
<CODE>out</CODE>, <CODE>ostride</CODE> and <CODE>odist</CODE> describe the output
array(s). The format is the same as for the input array.
<UL>
<LI><EM>In-place transforms</EM>:
<A NAME="IDX121"></A>
If the <CODE>plan</CODE> specifies an in-place transform, <CODE>ostride</CODE> and
<CODE>odist</CODE> are always ignored. If <CODE>out</CODE> is <CODE>NULL</CODE>,
<CODE>out</CODE> is ignored, too. Otherwise, <CODE>out</CODE> is interpreted as a
pointer to an array of <CODE>n</CODE> complex numbers, that FFTW will use as
temporary space to perform the in-place computation. <CODE>out</CODE> is used
as scratch space and its contents destroyed. In this case, <CODE>out</CODE>
must be an ordinary array whose elements are contiguous in memory (no
striding).
</UL>
</UL>
<P>
The function <CODE>fftw_one</CODE> transforms a single, contiguous input array
to a contiguous output array. By definition, the call
<PRE>
fftw_one(plan, in, out)
</PRE>
<P>
is equivalent to
<PRE>
fftw(plan, 1, in, 1, 0, out, 1, 0)
</PRE>
<H3><A NAME="SEC22">Destroying a One-dimensional Plan</A></H3>
<PRE>
#include <fftw.h>
void fftw_destroy_plan(fftw_plan plan);
</PRE>
<P>
<A NAME="IDX122"></A>
<P>
The function <CODE>fftw_destroy_plan</CODE> frees the plan <CODE>plan</CODE> and
releases all the memory associated with it. After destruction, a plan
is no longer valid.
<H3><A NAME="SEC23">What FFTW Really Computes</A></H3>
<P>
<A NAME="IDX123"></A>
In this section, we define precisely what FFTW computes. Please be
warned that different authors and software packages might employ
different conventions than FFTW does.
<P>
The forward transform of a complex array X of size
n computes an array Y, where
<center><IMG SRC="equation-1.gif" ALIGN="top"></center>
<P>
The backward transform computes
<center><IMG SRC="equation-2.gif" ALIGN="top"></center>
<P>
<A NAME="IDX124"></A>
FFTW computes an unnormalized transform, that is, the equation
IFFT(FFT(X)) = n X holds. In other words, applying the forward
and then the backward transform will multiply the input by n.
<P>
<A NAME="IDX125"></A>
An <CODE>FFTW_FORWARD</CODE> transform corresponds to a sign of -1 in
the exponent of the DFT. Note also that we use the standard
"in-order" output ordering--the k-th output corresponds to the
frequency k/n (or k/T, where T is your total
sampling period). For those who like to think in terms of positive and
negative frequencies, this means that the positive frequencies are
stored in the first half of the output and the negative frequencies are
stored in backwards order in the second half of the output. (The
frequency -k/n is the same as the frequency (n-k)/n.)
<H2><A NAME="SEC24">Multi-dimensional Transforms Reference</A></H2>
<P>
<A NAME="IDX126"></A>
<A NAME="IDX127"></A>
The multi-dimensional complex routines are generally prefixed with
<CODE>fftwnd_</CODE>. Programs using FFTWND should be linked with <CODE>-lfftw
-lm</CODE> on Unix systems, or with the FFTW and standard math libraries in
general.
<A NAME="IDX128"></A>
<H3><A NAME="SEC25">Plan Creation for Multi-dimensional Transforms</A></H3>
<PRE>
#include <fftw.h>
fftwnd_plan fftwnd_create_plan(int rank, const int *n,
fftw_direction dir, int flags);
fftwnd_plan fftw2d_create_plan(int nx, int ny,
fftw_direction dir, int flags);
fftwnd_plan fftw3d_create_plan(int nx, int ny, int nz,
fftw_direction dir, int flags);
fftwnd_plan fftwnd_create_plan_specific(int rank, const int *n,
fftw_direction dir,
int flags,
fftw_complex *in, int istride,
fftw_complex *out, int ostride);
fftwnd_plan fftw2d_create_plan_specific(int nx, int ny,
fftw_direction dir,
int flags,
fftw_complex *in, int istride,
fftw_complex *out, int ostride);
fftwnd_plan fftw3d_create_plan_specific(int nx, int ny, int nz,
fftw_direction dir, int flags,
fftw_complex *in, int istride,
fftw_complex *out, int ostride);
</PRE>
<P>
<A NAME="IDX129"></A>
<A NAME="IDX130"></A>
<A NAME="IDX131"></A>
<A NAME="IDX132"></A>
<A NAME="IDX133"></A>
<A NAME="IDX134"></A>
<A NAME="IDX135"></A>
<A NAME="IDX136"></A>
<P>
The function <CODE>fftwnd_create_plan</CODE> creates a plan, which is a data
structure containing all the information that <CODE>fftwnd</CODE> needs in
order to compute a multi-dimensional Fourier transform. You can create
as many plans as you need, but only one plan for a given array size is
required (a plan can be reused many times). The functions
<CODE>fftw2d_create_plan</CODE> and <CODE>fftw3d_create_plan</CODE> are optional,
alternative interfaces to <CODE>fftwnd_create_plan</CODE> for two and three
dimensions, respectively.
<P>
<CODE>fftwnd_create_plan</CODE> returns a valid plan, or <CODE>NULL</CODE> if, for
some reason, the plan can't be created. This can happen if memory runs
out or if the arguments are invalid in some way (e.g. if <CODE>rank</CODE> <
0).
<P>
The <CODE>create_plan_specific</CODE> variants take as additional arguments
specific input/output arrays and their strides. For the last four
arguments, you should pass the arrays and strides that you will
eventually be passing to <CODE>fftwnd</CODE>. The resulting plans will be
optimized for those arrays and strides, although they may be used on
other arrays as well. Note: the contents of the in and out arrays are
<EM>destroyed</EM> by the specific planner (the initial contents are
ignored, so the arrays need not have been initialized).
See Section <A HREF="fftw_3.html#SEC20">Discussion on Specific Plans</A>, for a discussion on specific plans.
<H4>Arguments</H4>
<UL>
<LI>
<CODE>rank</CODE> is the dimensionality of the arrays to be transformed. It
can be any non-negative integer.
<LI>
<CODE>n</CODE> is a pointer to an array of <CODE>rank</CODE> integers, giving the
size of each dimension of the arrays to be transformed. These sizes,
which must be positive integers, correspond to the dimensions of
<A NAME="IDX137"></A>
row-major arrays--i.e. <CODE>n[0]</CODE> is the size of the dimension whose
indices vary most slowly, and so on. (See Section <A HREF="fftw_2.html#SEC7">Multi-dimensional Array Format</A>, for more information on row-major storage.)
See Section <A HREF="fftw_3.html#SEC19">Plan Creation for One-dimensional Transforms</A>,
for more information regarding optimal array sizes.
<LI>
<CODE>nx</CODE> and <CODE>ny</CODE> in <CODE>fftw2d_create_plan</CODE> are positive
integers specifying the dimensions of the rank 2 array to be
transformed. i.e. they specify that the transform will operate on
<CODE>nx x ny</CODE> arrays in row-major order, where <CODE>nx</CODE> is the number
of rows and <CODE>ny</CODE> is the number of columns.
<LI>
<CODE>nx</CODE>, <CODE>ny</CODE> and <CODE>nz</CODE> in <CODE>fftw3d_create_plan</CODE> are
positive integers specifying the dimensions of the rank 3 array to be
transformed. i.e. they specify that the transform will operate on
<CODE>nx x ny x nz</CODE> arrays in row-major order.
<LI>
<CODE>dir</CODE> is the sign of the exponent in the formula that defines the
Fourier transform. It can be -1 or +1. The aliases
<CODE>FFTW_FORWARD</CODE> and <CODE>FFTW_BACKWARD</CODE> are provided, where
<CODE>FFTW_FORWARD</CODE> stands for -1.
<LI>
<A NAME="IDX138"></A>
<CODE>flags</CODE> is a boolean OR (<SAMP>`|'</SAMP>) of zero or more of the following:
<UL>
<LI>
<CODE>FFTW_MEASURE</CODE>: this flag tells FFTW to find the optimal plan by
actually <EM>computing</EM> several FFTs and measuring their execution
time.
<LI>
<CODE>FFTW_ESTIMATE</CODE>: do not run any FFT and provide a "reasonable"
plan (for a RISC processor with many registers). If neither
<CODE>FFTW_ESTIMATE</CODE> nor <CODE>FFTW_MEASURE</CODE> is provided, the default is
<CODE>FFTW_ESTIMATE</CODE>.
<LI>
<CODE>FFTW_OUT_OF_PLACE</CODE>: produce a plan assuming that the input
and output arrays will be distinct (this is the default).
<LI>
<CODE>FFTW_IN_PLACE</CODE>: produce a plan assuming that you want to perform
the transform in-place. (Unlike the one-dimensional transform, this
"really" <A NAME="DOCF3" HREF="fftw_foot.html#FOOT3">(3)</A> performs the
transform in-place.) Note that, if you want to perform in-place
transforms, you <EM>must</EM> use a plan created with this option.
The default mode of operation is <CODE>FFTW_OUT_OF_PLACE</CODE>.
<LI>
<A NAME="IDX139"></A>
<CODE>FFTW_USE_WISDOM</CODE>: use any <CODE>wisdom</CODE> that is available to help
in the creation of the plan. (See Section <A HREF="fftw_2.html#SEC13">Words of Wisdom</A>.) This can greatly
speed the creation of plans, especially with the <CODE>FFTW_MEASURE</CODE>
option. <CODE>FFTW_ESTIMATE</CODE> plans can also take advantage of
<CODE>wisdom</CODE> to produce a more optimal plan (based on past
measurements) than the estimation heuristic would normally
generate. When the <CODE>FFTW_MEASURE</CODE> option is used, new <CODE>wisdom</CODE>
will also be generated if the current transform size is not completely
understood by existing <CODE>wisdom</CODE>. Note that the same <CODE>wisdom</CODE>
is shared between one-dimensional and multi-dimensional transforms.
</UL>
<LI>
<CODE>in</CODE>, <CODE>out</CODE>, <CODE>istride</CODE>, <CODE>ostride</CODE> (only for the
<CODE>_create_plan_specific</CODE> variants): see corresponding arguments in
the description of <CODE>fftwnd</CODE>. (See Section <A HREF="fftw_3.html#SEC26">Computing the Multi-dimensional Transform</A>.)
</UL>
<H3><A NAME="SEC26">Computing the Multi-dimensional Transform</A></H3>
<PRE>
#include <fftw.h>
void fftwnd(fftwnd_plan plan, int howmany,
fftw_complex *in, int istride, int idist,
fftw_complex *out, int ostride, int odist);
void fftwnd_one(fftwnd_plan p, fftw_complex *in,
fftw_complex *out);
</PRE>
<P>
<A NAME="IDX140"></A>
<A NAME="IDX141"></A>
<P>
The function <CODE>fftwnd</CODE> computes one or more multi-dimensional
Fourier Transforms, using a plan created by <CODE>fftwnd_create_plan</CODE>
(see Section <A HREF="fftw_3.html#SEC25">Plan Creation for Multi-dimensional Transforms</A>). (Note that the plan determines the rank and dimensions of
the array to be transformed.) The function <CODE>fftwnd_one</CODE> provides a
simplified interface for the common case of single input array of stride
1.
<A NAME="IDX142"></A>
<H4>Arguments</H4>
<UL>
<LI>
<CODE>plan</CODE> is the plan created by <CODE>fftwnd_create_plan</CODE>.
(see Section <A HREF="fftw_3.html#SEC25">Plan Creation for Multi-dimensional Transforms</A>). In the case of two and three-dimensional transforms, it
could also have been created by <CODE>fftw2d_create_plan</CODE> or
<CODE>fftw3d_create_plan</CODE>, respectively.
<LI>
<CODE>howmany</CODE> is the number of multi-dimensional transforms
<CODE>fftwnd</CODE> will compute.
<LI>
<CODE>in</CODE>, <CODE>istride</CODE> and <CODE>idist</CODE> describe the input array(s).
There are <CODE>howmany</CODE> multi-dimensional input arrays; the first one
is pointed to by <CODE>in</CODE>, the second one is pointed to by <CODE>in +
idist</CODE>, and so on, up to <CODE>in + (howmany - 1) * idist</CODE>. Each
multi-dimensional input array consists of complex numbers (see Section <A HREF="fftw_3.html#SEC17">Data Types</A>), stored in row-major format (see Section <A HREF="fftw_2.html#SEC7">Multi-dimensional Array Format</A>), which are not necessarily contiguous in memory. Specifically,
<CODE>in[0]</CODE> is the first element of the first array, <CODE>in[istride]</CODE>
is the second element of the first array, and so on. In general, the
<CODE>i</CODE>-th element of the <CODE>j</CODE>-th input array will be in position
<CODE>in[i * istride + j * idist]</CODE>. Note that, here, <CODE>i</CODE> refers to
an index into the row-major format for the multi-dimensional array,
rather than an index in any particular dimension.
<UL>
<LI><EM>In-place transforms</EM>:
<A NAME="IDX143"></A>
For plans created with the <CODE>FFTW_IN_PLACE</CODE> option, the transform is
computed in-place--the output is returned in the <CODE>in</CODE> array, using
the same strides, etcetera, as were used in the input.
</UL>
<LI>
<CODE>out</CODE>, <CODE>ostride</CODE> and <CODE>odist</CODE> describe the output array(s).
The format is the same as for the input array.
<UL>
<LI><EM>In-place transforms</EM>:
These parameters are ignored for plans created with the
<CODE>FFTW_IN_PLACE</CODE> option.
</UL>
</UL>
<P>
The function <CODE>fftwnd_one</CODE> transforms a single, contiguous input
array to a contiguous output array. By definition, the call
<PRE>
fftwnd_one(plan, in, out)
</PRE>
<P>
is equivalent to
<PRE>
fftwnd(plan, 1, in, 1, 0, out, 1, 0)
</PRE>
<H3><A NAME="SEC27">Destroying a Multi-dimensional Plan</A></H3>
<PRE>
#include <fftw.h>
void fftwnd_destroy_plan(fftwnd_plan plan);
</PRE>
<P>
<A NAME="IDX144"></A>
<P>
The function <CODE>fftwnd_destroy_plan</CODE> frees the plan <CODE>plan</CODE>
and releases all the memory associated with it. After destruction,
a plan is no longer valid.
<H3><A NAME="SEC28">What FFTWND Really Computes</A></H3>
<P>
<A NAME="IDX145"></A>
<P>
The conventions that we follow for the multi-dimensional transform are
analogous to those for the one-dimensional transform. In particular, the
forward transform has a negative sign in the exponent and neither the
forward nor the backward transforms will perform any normalization.
Computing the backward transform of the forward transform will multiply
the array by the product of its dimensions. The output is in-order, and
the zeroth element of the output is the amplitude of the zero frequency
component.
The Gods forbade using HTML to display mathematical formulas. Please
see the TeX or Postscript version of this manual for the proper
definition of the n-dimensional Fourier transform that FFTW
uses. For completeness, we include a bitmap of the TeX output below:
<P><center><IMG SRC="equation-3.gif" ALIGN="top"></center>
<H2><A NAME="SEC29">Real One-dimensional Transforms Reference</A></H2>
<P>
The one-dimensional real routines are generally prefixed with
<CODE>rfftw_</CODE>. <A NAME="DOCF4" HREF="fftw_foot.html#FOOT4">(4)</A> Programs using RFFTW
should be linked with <CODE>-lrfftw -lfftw -lm</CODE> on Unix systems, or with
the RFFTW, the FFTW, and the standard math libraries in general.
<A NAME="IDX146"></A>
<A NAME="IDX147"></A>
<A NAME="IDX148"></A>
<H3><A NAME="SEC30">Plan Creation for Real One-dimensional Transforms</A></H3>
<PRE>
#include <rfftw.h>
rfftw_plan rfftw_create_plan(int n, fftw_direction dir, int flags);
rfftw_plan rfftw_create_plan_specific(int n, fftw_direction dir,
int flags, fftw_real *in, int istride,
fftw_real *out, int ostride);
</PRE>
<P>
<A NAME="IDX149"></A>
<A NAME="IDX150"></A>
<A NAME="IDX151"></A>
<P>
The function <CODE>rfftw_create_plan</CODE> creates a plan, which is a data
structure containing all the information that <CODE>rfftw</CODE> needs in
order to compute the 1D real Fourier transform. You can create as many
plans as you need, but only one plan for a given array size is required
(a plan can be reused many times).
<P>
<CODE>rfftw_create_plan</CODE> returns a valid plan, or <CODE>NULL</CODE> if, for
some reason, the plan can't be created. In the default installation,
this cannot happen, but it is possible to configure RFFTW in such a way
that some input sizes are forbidden, and RFFTW cannot create a plan.
<P>
The <CODE>rfftw_create_plan_specific</CODE> variant takes as additional
arguments specific input/output arrays and their strides. For the last
four arguments, you should pass the arrays and strides that you will
eventually be passing to <CODE>rfftw</CODE>. The resulting plans will be
optimized for those arrays and strides, although they may be used on
other arrays as well. Note: the contents of the in and out arrays are
<EM>destroyed</EM> by the specific planner (the initial contents are
ignored, so the arrays need not have been initialized).
See Section <A HREF="fftw_3.html#SEC20">Discussion on Specific Plans</A>, for a discussion on specific plans.
<H4>Arguments</H4>
<UL>
<LI>
<CODE>n</CODE> is the size of the transform. It can be
any positive integer.
<UL>
<LI>
RFFTW is best at handling sizes of the form
2<SUP>a</SUP> 3<SUP>b</SUP> 5<SUP>c</SUP> 7<SUP>d</SUP>
11<SUP>e</SUP> 13<SUP>f</SUP>,
where e+f is either 0 or
1, and the other exponents are arbitrary. Other sizes are
computed by means of a slow, general-purpose routine (reducing to
O(n<sup>2</sup>)
performance for prime sizes). (It is possible to customize RFFTW for
different array sizes. See Section <A HREF="fftw_6.html#SEC66">Installation and Customization</A>, for more
information.) Transforms whose sizes are powers of 2 are
especially fast. If you have large prime factors, it may be faster to
switch over to the complex FFTW routines, which have
O(n lg n)
performance even for prime sizes (we don't know of a similar algorithm
specialized for real data, unfortunately).
</UL>
<LI>
<CODE>dir</CODE> is the direction of the desired transform, either
<CODE>FFTW_REAL_TO_COMPLEX</CODE> or <CODE>FFTW_COMPLEX_TO_REAL</CODE>,
corresponding to <CODE>FFTW_FORWARD</CODE> or <CODE>FFTW_BACKWARD</CODE>,
respectively.
<A NAME="IDX152"></A>
<A NAME="IDX153"></A>
<LI>
<A NAME="IDX154"></A>
<CODE>flags</CODE> is a boolean OR (<SAMP>`|'</SAMP>) of zero or more of the following:
<UL>
<LI>
<CODE>FFTW_MEASURE</CODE>: this flag tells RFFTW to find the optimal plan by
actually <EM>computing</EM> several FFTs and measuring their
execution time. Depending on the installation, this can take some
time.
<LI>
<CODE>FFTW_ESTIMATE</CODE>: do not run any FFT and provide a "reasonable"
plan (for a RISC processor with many registers). If neither
<CODE>FFTW_ESTIMATE</CODE> nor <CODE>FFTW_MEASURE</CODE> is provided, the default is
<CODE>FFTW_ESTIMATE</CODE>.
<LI>
<CODE>FFTW_OUT_OF_PLACE</CODE>: produce a plan assuming that the input
and output arrays will be distinct (this is the default).
<LI>
<CODE>FFTW_IN_PLACE</CODE>: produce a plan assuming that you want the output
in the input array. The algorithm used is not necessarily in place:
RFFTW is able to compute true in-place transforms only for small values
of <CODE>n</CODE>. If RFFTW is not able to compute the transform in-place, it
will allocate a temporary array (unless you provide one yourself),
compute the transform out of place, and copy the result back.
<EM>Warning: This option changes the meaning of some parameters of
<CODE>rfftw</CODE></EM> (see Section <A HREF="fftw_3.html#SEC31">Computing the Real One-dimensional Transform</A>).
The default mode of operation is <CODE>FFTW_OUT_OF_PLACE</CODE>.
<LI>
<CODE>FFTW_USE_WISDOM</CODE>: use any <CODE>wisdom</CODE> that is available to help
in the creation of the plan. (See Section <A HREF="fftw_2.html#SEC13">Words of Wisdom</A>.)
This can greatly speed the creation of plans, especially with the
<CODE>FFTW_MEASURE</CODE> option. <CODE>FFTW_ESTIMATE</CODE> plans can also take
advantage of <CODE>wisdom</CODE> to produce a more optimal plan (based on past
measurements) than the estimation heuristic would normally
generate. When the <CODE>FFTW_MEASURE</CODE> option is used, new <CODE>wisdom</CODE>
will also be generated if the current transform size is not completely
understood by existing <CODE>wisdom</CODE>.
</UL>
<LI>
<CODE>in</CODE>, <CODE>out</CODE>, <CODE>istride</CODE>, <CODE>ostride</CODE> (only for
<CODE>rfftw_create_plan_specific</CODE>): see corresponding arguments in the
description of <CODE>rfftw</CODE>. (See Section <A HREF="fftw_3.html#SEC31">Computing the Real One-dimensional Transform</A>.) In particular, the <CODE>out</CODE> and
<CODE>ostride</CODE> parameters have the same special meaning for
<CODE>FFTW_IN_PLACE</CODE> transforms as they have for <CODE>rfftw</CODE>.
</UL>
<H3><A NAME="SEC31">Computing the Real One-dimensional Transform</A></H3>
<PRE>
#include <rfftw.h>
void rfftw(rfftw_plan plan, int howmany,
fftw_real *in, int istride, int idist,
fftw_real *out, int ostride, int odist);
void rfftw_one(rfftw_plan plan, fftw_real *in, fftw_real *out);
</PRE>
<P>
<A NAME="IDX155"></A>
<A NAME="IDX156"></A>
<P>
The function <CODE>rfftw</CODE> computes the Real One-dimensional Fourier
Transform, using a plan created by <CODE>rfftw_create_plan</CODE>
(see Section <A HREF="fftw_3.html#SEC30">Plan Creation for Real One-dimensional Transforms</A>). The function <CODE>rfftw_one</CODE> provides a simplified
interface for the common case of single input array of stride 1.
<A NAME="IDX157"></A>
<P>
<EM>Important:</EM> When invoked for an out-of-place,
<CODE>FFTW_COMPLEX_TO_REAL</CODE> transform, the input array is overwritten
with scratch values by these routines. The input array is not modified
for <CODE>FFTW_REAL_TO_COMPLEX</CODE> transforms.
<H4>Arguments</H4>
<UL>
<LI>
<CODE>plan</CODE> is the plan created by <CODE>rfftw_create_plan</CODE>
(see Section <A HREF="fftw_3.html#SEC30">Plan Creation for Real One-dimensional Transforms</A>).
<LI>
<CODE>howmany</CODE> is the number of transforms <CODE>rfftw</CODE> will compute.
It is faster to tell RFFTW to compute many transforms, instead of
simply calling <CODE>rfftw</CODE> many times.
<LI>
<CODE>in</CODE>, <CODE>istride</CODE> and <CODE>idist</CODE> describe the input array(s).
There are two cases. If the <CODE>plan</CODE> defines a
<CODE>FFTW_REAL_TO_COMPLEX</CODE> transform, <CODE>in</CODE> is a real array.
Otherwise, for <CODE>FFTW_COMPLEX_TO_REAL</CODE> transforms, <CODE>in</CODE> is a
halfcomplex array <EM>whose contents will be destroyed</EM>.
<LI>
<CODE>out</CODE>, <CODE>ostride</CODE> and <CODE>odist</CODE> describe the output
array(s), and have the same meaning as the corresponding parameters for
the input array.
<UL>
<LI><EM>In-place transforms</EM>:
If the <CODE>plan</CODE> specifies an in-place transform, <CODE>ostride</CODE> and
<CODE>odist</CODE> are always ignored. If <CODE>out</CODE> is <CODE>NULL</CODE>,
<CODE>out</CODE> is ignored, too. Otherwise, <CODE>out</CODE> is interpreted as a
pointer to an array of <CODE>n</CODE> complex numbers, that FFTW will use as
temporary space to perform the in-place computation. <CODE>out</CODE> is used
as scratch space and its contents destroyed. In this case, <CODE>out</CODE>
must be an ordinary array whose elements are contiguous in memory (no
striding).
</UL>
</UL>
<P>
The function <CODE>rfftw_one</CODE> transforms a single, contiguous input array
to a contiguous output array. By definition, the call
<PRE>
rfftw_one(plan, in, out)
</PRE>
<P>
is equivalent to
<PRE>
rfftw(plan, 1, in, 1, 0, out, 1, 0)
</PRE>
<H3><A NAME="SEC32">Destroying a Real One-dimensional Plan</A></H3>
<PRE>
#include <rfftw.h>
void rfftw_destroy_plan(rfftw_plan plan);
</PRE>
<P>
<A NAME="IDX158"></A>
<P>
The function <CODE>rfftw_destroy_plan</CODE> frees the plan <CODE>plan</CODE> and
releases all the memory associated with it. After destruction, a plan
is no longer valid.
<H3><A NAME="SEC33">What RFFTW Really Computes</A></H3>
<P>
<A NAME="IDX159"></A>
In this section, we define precisely what RFFTW computes.
<P>
The real to complex (<CODE>FFTW_REAL_TO_COMPLEX</CODE>) transform of a real
array X of size n computes an hermitian array Y,
where
<center><IMG SRC="equation-1.gif" ALIGN="top"></center>
(That Y is a hermitian array is not intended to be obvious,
although the proof is easy.) The hermitian array Y is stored in
halfcomplex order (see Section <A HREF="fftw_3.html#SEC17">Data Types</A>). Currently, RFFTW provides no
way to compute a real to complex transform with a positive sign in the
exponent.
<P>
The complex to real (<CODE>FFTW_COMPLEX_TO_REAL</CODE>) transform of a hermitian
array X of size n computes a real array Y, where
<center><IMG SRC="equation-2.gif" ALIGN="top"></center>
(That Y is a real array is not intended to be obvious, although
the proof is easy.) The hermitian input array X is stored in
halfcomplex order (see Section <A HREF="fftw_3.html#SEC17">Data Types</A>). Currently, RFFTW provides no
way to compute a complex to real transform with a negative sign in the
exponent.
<P>
<A NAME="IDX160"></A>
Like FFTW, RFFTW computes an unnormalized transform. In other words,
applying the real to complex (forward) and then the complex to real
(backward) transform will multiply the input by n.
<H2><A NAME="SEC34">Real Multi-dimensional Transforms Reference</A></H2>
<P>
<A NAME="IDX161"></A>
<A NAME="IDX162"></A>
<P>
The multi-dimensional real routines are generally prefixed with
<CODE>rfftwnd_</CODE>. Programs using RFFTWND should be linked with
<CODE>-lrfftw -lfftw -lm</CODE> on Unix systems, or with the FFTW, RFFTW, and
standard math libraries in general.
<A NAME="IDX163"></A>
<H3><A NAME="SEC35">Plan Creation for Real Multi-dimensional Transforms</A></H3>
<PRE>
#include <rfftw.h>
rfftwnd_plan rfftwnd_create_plan(int rank, const int *n,
fftw_direction dir, int flags);
rfftwnd_plan rfftw2d_create_plan(int nx, int ny,
fftw_direction dir, int flags);
rfftwnd_plan rfftw3d_create_plan(int nx, int ny, int nz,
fftw_direction dir, int flags);
</PRE>
<P>
<A NAME="IDX164"></A>
<A NAME="IDX165"></A>
<A NAME="IDX166"></A>
<A NAME="IDX167"></A>
<A NAME="IDX168"></A>
<P>
The function <CODE>rfftwnd_create_plan</CODE> creates a plan, which is a data
structure containing all the information that <CODE>rfftwnd</CODE> needs in
order to compute a multi-dimensional real Fourier transform. You can
create as many plans as you need, but only one plan for a given array
size is required (a plan can be reused many times). The functions
<CODE>rfftw2d_create_plan</CODE> and <CODE>rfftw3d_create_plan</CODE> are optional,
alternative interfaces to <CODE>rfftwnd_create_plan</CODE> for two and three
dimensions, respectively.
<P>
<CODE>rfftwnd_create_plan</CODE> returns a valid plan, or <CODE>NULL</CODE> if, for
some reason, the plan can't be created. This can happen if the
arguments are invalid in some way (e.g. if <CODE>rank</CODE> < 0).
<H4>Arguments</H4>
<UL>
<LI>
<CODE>rank</CODE> is the dimensionality of the arrays to be transformed. It
can be any non-negative integer.
<LI>
<CODE>n</CODE> is a pointer to an array of <CODE>rank</CODE> integers, giving the
size of each dimension of the arrays to be transformed. Note that these
are always the dimensions of the <EM>real</EM> arrays; the complex arrays
have different dimensions (see Section <A HREF="fftw_3.html#SEC37">Array Dimensions for Real Multi-dimensional Transforms</A>). These sizes, which must be positive
integers, correspond to the dimensions of row-major
arrays--i.e. <CODE>n[0]</CODE> is the size of the dimension whose indices
vary most slowly, and so on. (See Section <A HREF="fftw_2.html#SEC7">Multi-dimensional Array Format</A>, for
more information.)
<UL>
<LI>
See Section <A HREF="fftw_3.html#SEC30">Plan Creation for Real One-dimensional Transforms</A>,
for more information regarding optimal array sizes.
</UL>
<LI>
<CODE>nx</CODE> and <CODE>ny</CODE> in <CODE>rfftw2d_create_plan</CODE> are positive
integers specifying the dimensions of the rank 2 array to be
transformed. i.e. they specify that the transform will operate on
<CODE>nx x ny</CODE> arrays in row-major order, where <CODE>nx</CODE> is the number
of rows and <CODE>ny</CODE> is the number of columns.
<LI>
<CODE>nx</CODE>, <CODE>ny</CODE> and <CODE>nz</CODE> in <CODE>rfftw3d_create_plan</CODE> are
positive integers specifying the dimensions of the rank 3 array to be
transformed. i.e. they specify that the transform will operate on
<CODE>nx x ny x nz</CODE> arrays in row-major order.
<LI>
<CODE>dir</CODE> is the direction of the desired transform, either
<CODE>FFTW_REAL_TO_COMPLEX</CODE> or <CODE>FFTW_COMPLEX_TO_REAL</CODE>,
corresponding to <CODE>FFTW_FORWARD</CODE> or <CODE>FFTW_BACKWARD</CODE>,
respectively.
<LI>
<A NAME="IDX169"></A>
<CODE>flags</CODE> is a boolean OR (<SAMP>`|'</SAMP>) of zero or more of the following:
<UL>
<LI>
<CODE>FFTW_MEASURE</CODE>: this flag tells FFTW to find the optimal plan by
actually <EM>computing</EM> several FFTs and measuring their execution
time.
<LI>
<CODE>FFTW_ESTIMATE</CODE>: do not run any FFT and provide a "reasonable"
plan (for a RISC processor with many registers). If neither
<CODE>FFTW_ESTIMATE</CODE> nor <CODE>FFTW_MEASURE</CODE> is provided, the default is
<CODE>FFTW_ESTIMATE</CODE>.
<LI>
<CODE>FFTW_OUT_OF_PLACE</CODE>: produce a plan assuming that the input
and output arrays will be distinct (this is the default).
<LI>
<A NAME="IDX170"></A>
<CODE>FFTW_IN_PLACE</CODE>: produce a plan assuming that you want to perform
the transform in-place. (Unlike the one-dimensional transform, this
"really" performs the transform in-place.) Note that, if you want to
perform in-place transforms, you <EM>must</EM> use a plan created with
this option. The use of this option has important implications for the
size of the input/output array (see Section <A HREF="fftw_3.html#SEC36">Computing the Real Multi-dimensional Transform</A>).
The default mode of operation is <CODE>FFTW_OUT_OF_PLACE</CODE>.
<LI>
<A NAME="IDX171"></A>
<CODE>FFTW_USE_WISDOM</CODE>: use any <CODE>wisdom</CODE> that is available to help
in the creation of the plan. (See Section <A HREF="fftw_2.html#SEC13">Words of Wisdom</A>.) This can greatly
speed the creation of plans, especially with the <CODE>FFTW_MEASURE</CODE>
option. <CODE>FFTW_ESTIMATE</CODE> plans can also take advantage of
<CODE>wisdom</CODE> to produce a more optimal plan (based on past
measurements) than the estimation heuristic would normally
generate. When the <CODE>FFTW_MEASURE</CODE> option is used, new <CODE>wisdom</CODE>
will also be generated if the current transform size is not completely
understood by existing <CODE>wisdom</CODE>. Note that the same <CODE>wisdom</CODE>
is shared between one-dimensional and multi-dimensional transforms.
</UL>
</UL>
<H3><A NAME="SEC36">Computing the Real Multi-dimensional Transform</A></H3>
<PRE>
#include <rfftw.h>
void rfftwnd_real_to_complex(rfftwnd_plan plan, int howmany,
fftw_real *in, int istride, int idist,
fftw_complex *out, int ostride, int odist);
void rfftwnd_complex_to_real(rfftwnd_plan plan, int howmany,
fftw_complex *in, int istride, int idist,
fftw_real *out, int ostride, int odist);
void rfftwnd_one_real_to_complex(rfftwnd_plan p, fftw_real *in,
fftw_complex *out);
void rfftwnd_one_complex_to_real(rfftwnd_plan p, fftw_complex *in,
fftw_real *out);
</PRE>
<P>
<A NAME="IDX172"></A>
<A NAME="IDX173"></A>
<A NAME="IDX174"></A>
<A NAME="IDX175"></A>
<P>
These functions compute the real multi-dimensional Fourier Transform,
using a plan created by <CODE>rfftwnd_create_plan</CODE>
(see Section <A HREF="fftw_3.html#SEC35">Plan Creation for Real Multi-dimensional Transforms</A>). (Note that the plan determines the rank and dimensions of
the array to be transformed.) The <SAMP>`<CODE>rfftwnd_one_</CODE>'</SAMP> functions
provide a simplified interface for the common case of single input array
of stride 1. Unlike other transform routines in FFTW, we here use
separate functions for the two directions of the transform in order to
correctly express the datatypes of the parameters.
<P>
<EM>Important:</EM> When invoked for an out-of-place,
<CODE>FFTW_COMPLEX_TO_REAL</CODE> transform with <CODE>rank > 1</CODE>, the input
array is overwritten with scratch values by these routines. The input
array is not modified for <CODE>FFTW_REAL_TO_COMPLEX</CODE> transforms or for
<CODE>FFTW_COMPLEX_TO_REAL</CODE> with <CODE>rank == 1</CODE>.
<H4>Arguments</H4>
<UL>
<LI>
<CODE>plan</CODE> is the plan created by <CODE>rfftwnd_create_plan</CODE>.
(see Section <A HREF="fftw_3.html#SEC35">Plan Creation for Real Multi-dimensional Transforms</A>). In the case of two and three-dimensional transforms, it
could also have been created by <CODE>rfftw2d_create_plan</CODE> or
<CODE>rfftw3d_create_plan</CODE>, respectively.
<CODE>FFTW_REAL_TO_COMPLEX</CODE> plans must be used with the
<SAMP>`<CODE>real_to_complex</CODE>'</SAMP> functions, and <CODE>FFTW_COMPLEX_TO_REAL</CODE>
plans must be used with the <SAMP>`<CODE>complex_to_real</CODE>'</SAMP> functions. It
is an error to mismatch the plan direction and the transform function.
<LI>
<CODE>howmany</CODE> is the number of transforms to be computed.
<LI>
<A NAME="IDX176"></A>
<CODE>in</CODE>, <CODE>istride</CODE> and <CODE>idist</CODE> describe the input array(s).
There are <CODE>howmany</CODE> input arrays; the first one is pointed to by
<CODE>in</CODE>, the second one is pointed to by <CODE>in + idist</CODE>, and so on,
up to <CODE>in + (howmany - 1) * idist</CODE>. Each input array is stored in
row-major format (see Section <A HREF="fftw_2.html#SEC7">Multi-dimensional Array Format</A>), and is not
necessarily contiguous in memory. Specifically, <CODE>in[0]</CODE> is the
first element of the first array, <CODE>in[istride]</CODE> is the second
element of the first array, and so on. In general, the <CODE>i</CODE>-th
element of the <CODE>j</CODE>-th input array will be in position <CODE>in[i *
istride + j * idist]</CODE>. Note that, here, <CODE>i</CODE> refers to an index into
the row-major format for the multi-dimensional array, rather than an
index in any particular dimension.
The dimensions of the arrays are different for real and complex data,
and are discussed in more detail below (see Section <A HREF="fftw_3.html#SEC37">Array Dimensions for Real Multi-dimensional Transforms</A>).
<UL>
<LI><EM>In-place transforms</EM>:
For plans created with the <CODE>FFTW_IN_PLACE</CODE> option, the transform is
computed in-place--the output is returned in the <CODE>in</CODE> array. The
meaning of the <CODE>stride</CODE> and <CODE>dist</CODE> parameters in this case is
subtle and is discussed below (see Section <A HREF="fftw_3.html#SEC38">Strides in In-place RFFTWND</A>).
</UL>
<LI>
<CODE>out</CODE>, <CODE>ostride</CODE> and <CODE>odist</CODE> describe the output
array(s). The format is the same as that for the input array. See
below for a discussion of the dimensions of the output array for real
and complex data.
<UL>
<LI><EM>In-place transforms</EM>:
These parameters are ignored for plans created with the
<CODE>FFTW_IN_PLACE</CODE> option.
</UL>
</UL>
<P>
The function <CODE>rfftwnd_one</CODE> transforms a single, contiguous input
array to a contiguous output array. By definition, the call
<PRE>
rfftwnd_one_...(plan, in, out)
</PRE>
<P>
is equivalent to
<PRE>
rfftwnd_...(plan, 1, in, 1, 0, out, 1, 0)
</PRE>
<H3><A NAME="SEC37">Array Dimensions for Real Multi-dimensional Transforms</A></H3>
<P>
<A NAME="IDX177"></A>
The output of a multi-dimensional transform of real data contains
symmetries that, in principle, make half of the outputs redundant
(see Section <A HREF="fftw_3.html#SEC40">What RFFTWND Really Computes</A>). In practice, it is not
possible to entirely realize these savings in an efficient and
understandable format. Instead, the output of the rfftwnd transforms is
<EM>slightly</EM> over half of the output of the corresponding complex
transform. We do not "pack" the data in any way, but store it as an
ordinary array of <CODE>fftw_complex</CODE> values. In fact, this data is
simply a subsection of what would be the array in the corresponding
complex transform.
<P>
Specifically, for a real transform of dimensions
n<sub>1</sub> x n<sub>2</sub> x ... x n<sub>d</sub>,
the complex data is an
n<sub>1</sub> x n<sub>2</sub> x ... x (n<sub>d</sub>/2+1)
array of <CODE>fftw_complex</CODE> values in row-major order (with the
division rounded down). That is, we only store the lower half (plus one
element) of the last dimension of the data from the ordinary complex
transform. (We could have instead taken half of any other dimension,
but implementation turns out to be simpler if the last, contiguous,
dimension is used.)
<P>
<A NAME="IDX178"></A>
<A NAME="IDX179"></A>
Since the complex data is slightly larger than the real data, some
complications arise for in-place transforms. In this case, the final
dimension of the real data must be padded with extra values to
accommodate the size of the complex data--two extra if the last
dimension is even and one if it is odd. That is, the last dimension of
the real data must physically contain
2 * (n<sub>d</sub>/2+1)
<CODE>fftw_real</CODE> values (exactly enough to hold the complex data).
This physical array size does not, however, change the <EM>logical</EM>
array size--only
n<sub>d</sub>
values are actually stored in the last dimension, and
n<sub>d</sub>
is the last dimension passed to <CODE>rfftwnd_create_plan</CODE>.
<H3><A NAME="SEC38">Strides in In-place RFFTWND</A></H3>
<P>
<A NAME="IDX180"></A>
<A NAME="IDX181"></A>
The fact that the input and output datatypes are different for rfftwnd
complicates the meaning of the <CODE>stride</CODE> and <CODE>dist</CODE> parameters
of in-place transforms--are they in units of <CODE>fftw_real</CODE> or
<CODE>fftw_complex</CODE> elements? When reading the input, they are
interpreted in units of the datatype of the input data. When writing
the output, the <CODE>istride</CODE> and <CODE>idist</CODE> are translated to the
output datatype's "units" in one of two ways, corresponding to the two
most common situations in which <CODE>stride</CODE> and <CODE>dist</CODE> parameters
are useful. Below, we refer to these "translated" parameters as
<CODE>ostride_t</CODE> and <CODE>odist_t</CODE>. (Note that these are computed
internally by rfftwnd; the actual <CODE>ostride</CODE> and <CODE>odist</CODE>
parameters are ignored for in-place transforms.)
<P>
First, there is the case where you are transforming a number of
contiguous arrays located one after another in memory. In this
situation, <CODE>istride</CODE> is <CODE>1</CODE> and <CODE>idist</CODE> is the product of
the physical dimensions of the array. <CODE>ostride_t</CODE> and
<CODE>odist_t</CODE> are then chosen so that the output arrays are contiguous
and lie on top of the input arrays. <CODE>ostride_t</CODE> is therefore
<CODE>1</CODE>. For a real-to-complex transform, <CODE>odist_t</CODE> is
<CODE>idist/2</CODE>; for a complex-to-real transform, <CODE>odist_t</CODE> is
<CODE>idist*2</CODE>.
<P>
The second case is when you have an array in which each element has
<CODE>nc</CODE> components (e.g. a structure with <CODE>nc</CODE> numeric fields),
and you want to transform all of the components at once. Here,
<CODE>istride</CODE> is <CODE>nc</CODE> and <CODE>idist</CODE> is <CODE>1</CODE>. For this
case, it is natural to want the output to also have <CODE>nc</CODE>
consecutive components, now of the output data type; this is exactly
what rfftwnd does. Specifically, it uses an <CODE>ostride_t</CODE> equal to
<CODE>istride</CODE>, and an <CODE>odist_t</CODE> of <CODE>1</CODE>. (Astute readers will
realize that some extra buffer space is required in order to perform
such a transform; this is handled automatically by rfftwnd.)
<P>
The general rule is as follows. <CODE>ostride_t</CODE> equals <CODE>istride</CODE>.
If <CODE>idist</CODE> is <CODE>1</CODE> and <CODE>idist</CODE> is less than
<CODE>istride</CODE>, then <CODE>odist_t</CODE> is <CODE>1</CODE>. Otherwise, for a
real-to-complex transform <CODE>odist_t</CODE> is <CODE>idist/2</CODE> and for a
complex-to-real transform <CODE>odist_t</CODE> is <CODE>idist*2</CODE>.
<H3><A NAME="SEC39">Destroying a Multi-dimensional Plan</A></H3>
<PRE>
#include <rfftw.h>
void rfftwnd_destroy_plan(rfftwnd_plan plan);
</PRE>
<P>
<A NAME="IDX182"></A>
<P>
The function <CODE>rfftwnd_destroy_plan</CODE> frees the plan <CODE>plan</CODE>
and releases all the memory associated with it. After destruction,
a plan is no longer valid.
<H3><A NAME="SEC40">What RFFTWND Really Computes</A></H3>
<P>
<A NAME="IDX183"></A>
<P>
The conventions that we follow for the real multi-dimensional transform
are analogous to those for the complex multi-dimensional transform. In
particular, the forward transform has a negative sign in the exponent
and neither the forward nor the backward transforms will perform any
normalization. Computing the backward transform of the forward
transform will multiply the array by the product of its dimensions (that
is, the logical dimensions of the real data). The forward transform is
real-to-complex and the backward transform is complex-to-real.
<P>
<A NAME="IDX184"></A>
<A NAME="IDX185"></A>
The Gods forbade using HTML to display mathematical formulas. Please
see the TeX or Postscript version of this manual for the proper
definition of the n-dimensional real Fourier transform that RFFTW
uses. For completeness, we include a bitmap of the TeX output below:
<P><center><IMG SRC="equation-4.gif" ALIGN="top"></center>
<H2><A NAME="SEC41">Wisdom Reference</A></H2>
<P>
<A NAME="IDX186"></A>
<H3><A NAME="SEC42">Exporting Wisdom</A></H3>
<PRE>
#include <fftw.h>
void fftw_export_wisdom(void (*emitter)(char c, void *), void *data);
void fftw_export_wisdom_to_file(FILE *output_file);
char *fftw_export_wisdom_to_string(void);
</PRE>
<P>
<A NAME="IDX187"></A>
<A NAME="IDX188"></A>
<A NAME="IDX189"></A>
<P>
These functions allow you to export all currently accumulated
<CODE>wisdom</CODE> in a form from which it can be later imported and
restored, even during a separate run of the program. (See Section <A HREF="fftw_2.html#SEC13">Words of Wisdom</A>.) The current store of <CODE>wisdom</CODE> is not
affected by calling any of these routines.
<P>
<CODE>fftw_export_wisdom</CODE> exports the <CODE>wisdom</CODE> to any output
medium, as specified by the callback function
<CODE>emitter</CODE>. <CODE>emitter</CODE> is a <CODE>putc</CODE>-like function that
writes the character <CODE>c</CODE> to some output; its second parameter is
the <CODE>data</CODE> pointer passed to <CODE>fftw_export_wisdom</CODE>. For
convenience, the following two "wrapper" routines are provided:
<P>
<CODE>fftw_export_wisdom_to_file</CODE> writes the <CODE>wisdom</CODE> to the
current position in <CODE>output_file</CODE>, which should be open with write
permission. Upon exit, the file remains open and is positioned at the
end of the <CODE>wisdom</CODE> data.
<P>
<CODE>fftw_export_wisdom_to_string</CODE> returns a pointer to a
<CODE>NULL</CODE>-terminated string holding the <CODE>wisdom</CODE> data. This
string is dynamically allocated, and it is the responsibility of the
caller to deallocate it with <CODE>fftw_free</CODE> when it is no longer
needed.
<P>
All of these routines export the wisdom in the same format, which we
will not document here except to say that it is LISP-like ASCII text
that is insensitive to white space.
<H3><A NAME="SEC43">Importing Wisdom</A></H3>
<PRE>
#include <fftw.h>
fftw_status fftw_import_wisdom(int (*get_input)(void *), void *data);
fftw_status fftw_import_wisdom_from_file(FILE *input_file);
fftw_status fftw_import_wisdom_from_string(const char *input_string);
</PRE>
<P>
<A NAME="IDX190"></A>
<A NAME="IDX191"></A>
<A NAME="IDX192"></A>
<P>
These functions import <CODE>wisdom</CODE> into a program from data stored by
the <CODE>fftw_export_wisdom</CODE> functions above. (See Section <A HREF="fftw_2.html#SEC13">Words of Wisdom</A>.)
The imported <CODE>wisdom</CODE> supplements rather than replaces any
<CODE>wisdom</CODE> already accumulated by the running program (except when
there is conflicting <CODE>wisdom</CODE>, in which case the existing wisdom is
replaced).
<P>
<CODE>fftw_import_wisdom</CODE> imports <CODE>wisdom</CODE> from any input medium,
as specified by the callback function <CODE>get_input</CODE>. <CODE>get_input</CODE>
is a <CODE>getc</CODE>-like function that returns the next character in the
input; its parameter is the <CODE>data</CODE> pointer passed to
<CODE>fftw_import_wisdom</CODE>. If the end of the input data is reached
(which should never happen for valid data), it may return either
<CODE>NULL</CODE> (ASCII 0) or <CODE>EOF</CODE> (as defined in <CODE><stdio.h></CODE>).
For convenience, the following two "wrapper" routines are provided:
<P>
<CODE>fftw_import_wisdom_from_file</CODE> reads <CODE>wisdom</CODE> from the
current position in <CODE>input_file</CODE>, which should be open with read
permission. Upon exit, the file remains open and is positioned at the
end of the <CODE>wisdom</CODE> data.
<P>
<CODE>fftw_import_wisdom_from_string</CODE> reads <CODE>wisdom</CODE> from the
<CODE>NULL</CODE>-terminated string <CODE>input_string</CODE>.
<P>
The return value of these routines is <CODE>FFTW_SUCCESS</CODE> if the wisdom
was read successfully, and <CODE>FFTW_FAILURE</CODE> otherwise. Note that, in
all of these functions, any data in the input stream past the end of the
<CODE>wisdom</CODE> data is simply ignored (it is not even read if the
<CODE>wisdom</CODE> data is well-formed).
<H3><A NAME="SEC44">Forgetting Wisdom</A></H3>
<PRE>
#include <fftw.h>
void fftw_forget_wisdom(void);
</PRE>
<P>
<A NAME="IDX193"></A>
<P>
Calling <CODE>fftw_forget_wisdom</CODE> causes all accumulated <CODE>wisdom</CODE>
to be discarded and its associated memory to be freed. (New
<CODE>wisdom</CODE> can still be gathered subsequently, however.)
<H2><A NAME="SEC45">Memory Allocator Reference</A></H2>
<PRE>
#include <fftw.h>
void *(*fftw_malloc_hook) (size_t n);
void (*fftw_free_hook) (void *p);
</PRE>
<P>
<A NAME="IDX194"></A>
<A NAME="IDX195"></A>
<A NAME="IDX196"></A>
<A NAME="IDX197"></A>
<P>
Whenever it has to allocate and release memory, FFTW ordinarily calls
<CODE>malloc</CODE> and <CODE>free</CODE>.
If <CODE>malloc</CODE> fails, FFTW prints an error message and exits. This
behavior may be undesirable in some applications. Also, special
memory-handling functions may be necessary in certain
environments. Consequently, FFTW provides means by which you can install
your own memory allocator and take whatever error-correcting action you
find appropriate. The variables <CODE>fftw_malloc_hook</CODE> and
<CODE>fftw_free_hook</CODE> are pointers to functions, and they are normally
<CODE>NULL</CODE>. If you set those variables to point to other functions,
then FFTW will use your routines instead of <CODE>malloc</CODE> and
<CODE>free</CODE>. <CODE>fftw_malloc_hook</CODE> must point to a <CODE>malloc</CODE>-like
function, and <CODE>fftw_free_hook</CODE> must point to a <CODE>free</CODE>-like
function.
<H2><A NAME="SEC46">Thread safety</A></H2>
<P>
<A NAME="IDX198"></A>
<A NAME="IDX199"></A>
Users writing multi-threaded programs must concern themselves with the
<EM>thread safety</EM> of the libraries they use--that is, whether it is
safe to call routines in parallel from multiple threads. FFTW can be
used in such an environment, but some care must be taken because certain
parts of FFTW use private global variables to share data between calls.
In particular, the plan-creation functions share trigonometric tables
and accumulated <CODE>wisdom</CODE>. (Users should note that these comments
only apply to programs using shared-memory threads. Parallelism using
MPI or forked processes involves a separate address-space and global
variables for each process, and is not susceptible to problems of this
sort.)
<P>
The central restriction of FFTW is that it is not safe to create
multiple plans in parallel. You must either create all of your plans
from a single thread, or instead use a semaphore, mutex, or other
mechanism to ensure that different threads don't attempt to create plans
at the same time. The same restriction also holds for destruction of
plans and importing/forgetting <CODE>wisdom</CODE>. Once created, a plan may
safely be used in any thread.
<P>
The actual transform routines in FFTW (<CODE>fftw_one</CODE>, etcetera) are
re-entrant and thread-safe, so it is fine to call them simultaneously
from multiple threads. Another question arises, however--is it safe to
use the <EM>same plan</EM> for multiple transforms in parallel? (It would
be unsafe if, for example, the plan were modified in some way by the
transform.) We address this question by defining an additional planner
flag, <CODE>FFTW_THREADSAFE</CODE>.
<A NAME="IDX200"></A>
When included in the flags for any of the plan-creation routines,
<CODE>FFTW_THREADSAFE</CODE> guarantees that the resulting plan will be
read-only and safe to use in parallel by multiple threads.
<P><HR><P>
Go to the <A HREF="fftw_1.html">first</A>, <A HREF="fftw_2.html">previous</A>, <A HREF="fftw_4.html">next</A>, <A HREF="fftw_10.html">last</A> section, <A HREF="fftw_toc.html">table of contents</A>.
</BODY>
</HTML>
|