File: complex.ml

package info (click to toggle)
fftw3 3.1.2-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 14,016 kB
  • ctags: 10,195
  • sloc: ansic: 154,845; asm: 33,960; ml: 12,962; sh: 8,943; perl: 1,392; makefile: 878; fortran: 108
file content (137 lines) | stat: -rw-r--r-- 4,382 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
(*
 * Copyright (c) 1997-1999 Massachusetts Institute of Technology
 * Copyright (c) 2003, 2006 Matteo Frigo
 * Copyright (c) 2003, 2006 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 *)
(* $Id: complex.ml,v 1.9 2006-02-12 23:34:12 athena Exp $ *)

(* abstraction layer for complex operations *)
open Littlesimp
open Expr

(* type of complex expressions *)
type expr = CE of Expr.expr * Expr.expr

let two = CE (makeNum Number.two, makeNum Number.zero)
let one = CE (makeNum Number.one, makeNum Number.zero)
let i = CE (makeNum Number.zero, makeNum Number.one)
let zero = CE (makeNum Number.zero, makeNum Number.zero)
let make (r, i) = CE (r, i)

let uminus (CE (a, b)) =  CE (makeUminus a, makeUminus b)

let inverse_int n = CE (makeNum (Number.div Number.one (Number.of_int n)),
			makeNum Number.zero)

let inverse_int_sqrt n = 
  CE (makeNum (Number.div Number.one (Number.sqrt (Number.of_int n))),
      makeNum Number.zero)
let int_sqrt n = 
  CE (makeNum (Number.sqrt (Number.of_int n)),
      makeNum Number.zero)

let nan x = CE (NaN x, makeNum Number.zero)

let half = inverse_int 2

let times (CE (a, b)) (CE (c, d)) = 
  CE (makePlus [makeTimes (a, c); makeUminus (makeTimes (b, d))],
      makePlus [makeTimes (a, d); makeTimes (b, c)])

let ctimes (CE (a, _)) (CE (c, _)) = 
  CE (CTimes (a, c), makeNum Number.zero)

let ctimesj (CE (a, _)) (CE (c, _)) = 
  CE (CTimesJ (a, c), makeNum Number.zero)
      
(* complex exponential (of root of unity); returns exp(2*pi*i/n * m) *)
let exp n i =
  let (c, s) = Number.cexp n i
  in CE (makeNum c, makeNum s)

(* various trig functions evaluated at (2*pi*i/n * m) *)
let sec n m =
  let (c, s) = Number.cexp n m
  in CE (makeNum (Number.div Number.one c), makeNum Number.zero)
let csc n m =
  let (c, s) = Number.cexp n m
  in CE (makeNum (Number.div Number.one s), makeNum Number.zero)
let tan n m =
  let (c, s) = Number.cexp n m
  in CE (makeNum (Number.div s c), makeNum Number.zero)
let cot n m =
  let (c, s) = Number.cexp n m
  in CE (makeNum (Number.div c s), makeNum Number.zero)
    
(* complex sum *)
let plus a =
  let rec unzip_complex = function
      [] -> ([], [])
    | ((CE (a, b)) :: s) ->
        let (r,i) = unzip_complex s
	in
	(a::r), (b::i) in
  let (c, d) = unzip_complex a in
  CE (makePlus c, makePlus d)

(* extract real/imaginary *)
let real (CE (a, b)) = CE (a, makeNum Number.zero)
let imag (CE (a, b)) = CE (b, makeNum Number.zero)
let iimag (CE (a, b)) = CE (makeNum Number.zero, b)
let conj (CE (a, b)) = CE (a, makeUminus b)

    
(* abstraction of sum_{i=0}^{n-1} *)
let sigma a b f = plus (List.map f (Util.interval a b))

(* store and assignment operations *)
let store_real v (CE (a, b)) = Expr.Store (v, a)
let store_imag v (CE (a, b)) = Expr.Store (v, b)
let store (vr, vi) x = (store_real vr x, store_imag vi x)

let assign_real v (CE (a, b)) = Expr.Assign (v, a)
let assign_imag v (CE (a, b)) = Expr.Assign (v, b)
let assign (vr, vi) x = (assign_real vr x, assign_imag vi x)


(************************
   shortcuts 
 ************************)
let (@*) = times
let (@+) a b = plus [a; b]
let (@-) a b = plus [a; uminus b]

(* type of complex signals *)
type signal = int -> expr

(* make a finite signal infinite *)
let infinite n signal i = if ((0 <= i) && (i < n)) then signal i else zero

let hermitian n a =
  Util.array n (fun i ->
    if (i = 0) then real (a 0)
    else if (i < n - i)  then (a i)
    else if (i > n - i)  then conj (a (n - i))
    else real (a i))

let antihermitian n a =
  Util.array n (fun i ->
    if (i = 0) then iimag (a 0)
    else if (i < n - i)  then (a i)
    else if (i > n - i)  then uminus (conj (a (n - i)))
    else iimag (a i))