1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
/*
* Copyright (c) 2003, 2006 Matteo Frigo
* Copyright (c) 2003, 2006 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include "ifftw.h"
/* in place square transposition, iterative */
void X(transpose)(R *I, INT n, INT s0, INT s1, INT vl)
{
INT i0, i1, v;
switch (vl) {
case 1:
for (i1 = 1; i1 < n; ++i1) {
for (i0 = 0; i0 < i1; ++i0) {
R x0 = I[i1 * s0 + i0 * s1];
R y0 = I[i1 * s1 + i0 * s0];
I[i1 * s1 + i0 * s0] = x0;
I[i1 * s0 + i0 * s1] = y0;
}
}
break;
case 2:
for (i1 = 1; i1 < n; ++i1) {
for (i0 = 0; i0 < i1; ++i0) {
R x0 = I[i1 * s0 + i0 * s1];
R x1 = I[i1 * s0 + i0 * s1 + 1];
R y0 = I[i1 * s1 + i0 * s0];
R y1 = I[i1 * s1 + i0 * s0 + 1];
I[i1 * s1 + i0 * s0] = x0;
I[i1 * s1 + i0 * s0 + 1] = x1;
I[i1 * s0 + i0 * s1] = y0;
I[i1 * s0 + i0 * s1 + 1] = y1;
}
}
break;
default:
for (i1 = 1; i1 < n; ++i1) {
for (i0 = 0; i0 < i1; ++i0) {
for (v = 0; v < vl; ++v) {
R x0 = I[i1 * s0 + i0 * s1 + v];
R y0 = I[i1 * s1 + i0 * s0 + v];
I[i1 * s1 + i0 * s0 + v] = x0;
I[i1 * s0 + i0 * s1 + v] = y0;
}
}
}
break;
}
}
struct transpose_closure {
R *I;
INT s0, s1, vl, tilesz;
R *buf0, *buf1;
};
static void dotile(INT n0l, INT n0u, INT n1l, INT n1u, void *args)
{
struct transpose_closure *k = (struct transpose_closure *)args;
R *I = k->I;
INT s0 = k->s0, s1 = k->s1, vl = k->vl;
INT i0, i1, v;
switch (vl) {
case 1:
for (i1 = n1l; i1 < n1u; ++i1) {
for (i0 = n0l; i0 < n0u; ++i0) {
R x0 = I[i1 * s0 + i0 * s1];
R y0 = I[i1 * s1 + i0 * s0];
I[i1 * s1 + i0 * s0] = x0;
I[i1 * s0 + i0 * s1] = y0;
}
}
break;
case 2:
for (i1 = n1l; i1 < n1u; ++i1) {
for (i0 = n0l; i0 < n0u; ++i0) {
R x0 = I[i1 * s0 + i0 * s1];
R x1 = I[i1 * s0 + i0 * s1 + 1];
R y0 = I[i1 * s1 + i0 * s0];
R y1 = I[i1 * s1 + i0 * s0 + 1];
I[i1 * s1 + i0 * s0] = x0;
I[i1 * s1 + i0 * s0 + 1] = x1;
I[i1 * s0 + i0 * s1] = y0;
I[i1 * s0 + i0 * s1 + 1] = y1;
}
}
break;
default:
for (i1 = n1l; i1 < n1u; ++i1) {
for (i0 = n0l; i0 < n0u; ++i0) {
for (v = 0; v < vl; ++v) {
R x0 = I[i1 * s0 + i0 * s1 + v];
R y0 = I[i1 * s1 + i0 * s0 + v];
I[i1 * s1 + i0 * s0 + v] = x0;
I[i1 * s0 + i0 * s1 + v] = y0;
}
}
}
}
}
static void dotile_buf(INT n0l, INT n0u, INT n1l, INT n1u, void *args)
{
struct transpose_closure *k = (struct transpose_closure *)args;
X(cpy2d_ci)(k->I + n0l * k->s0 + n1l * k->s1,
k->buf0,
n0u - n0l, k->s0, k->vl,
n1u - n1l, k->s1, k->vl * (n0u - n0l),
k->vl);
X(cpy2d_ci)(k->I + n0l * k->s1 + n1l * k->s0,
k->buf1,
n0u - n0l, k->s1, k->vl,
n1u - n1l, k->s0, k->vl * (n0u - n0l),
k->vl);
X(cpy2d_co)(k->buf1,
k->I + n0l * k->s0 + n1l * k->s1,
n0u - n0l, k->vl, k->s0,
n1u - n1l, k->vl * (n0u - n0l), k->s1,
k->vl);
X(cpy2d_co)(k->buf0,
k->I + n0l * k->s1 + n1l * k->s0,
n0u - n0l, k->vl, k->s1,
n1u - n1l, k->vl * (n0u - n0l), k->s0,
k->vl);
}
static void transpose_rec(R *I, INT n,
void (*f)(INT n0l, INT n0u, INT n1l, INT n1u,
void *args),
struct transpose_closure *k)
{
tail:
if (n > 1) {
INT n2 = n / 2;
k->I = I;
X(tile2d)(0, n2, n2, n, k->tilesz, f, k);
transpose_rec(I, n2, f, k);
I += n2 * (k->s0 + k->s1); n -= n2; goto tail;
}
}
void X(transpose_tiled)(R *I, INT n, INT s0, INT s1, INT vl)
{
struct transpose_closure k;
k.s0 = s0;
k.s1 = s1;
k.vl = vl;
/* two blocks must be in cache, to be swapped */
k.tilesz = X(compute_tilesz)(vl, 2);
k.buf0 = k.buf1 = 0; /* unused */
transpose_rec(I, n, dotile, &k);
}
void X(transpose_tiledbuf)(R *I, INT n, INT s0, INT s1, INT vl)
{
struct transpose_closure k;
/* Assume that the the rows of I conflict into the same cache
lines, and therefore we don't need to reserve cache space for
the input. If the rows don't conflict, there is no reason
to use tiledbuf at all.*/
R buf0[CACHESIZE / (2 * sizeof(R))];
R buf1[CACHESIZE / (2 * sizeof(R))];
k.s0 = s0;
k.s1 = s1;
k.vl = vl;
k.tilesz = X(compute_tilesz)(vl, 2);
k.buf0 = buf0;
k.buf1 = buf1;
A(k.tilesz * k.tilesz * vl * sizeof(R) <= sizeof(buf0));
A(k.tilesz * k.tilesz * vl * sizeof(R) <= sizeof(buf1));
transpose_rec(I, n, dotile_buf, &k);
}
|