1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
|
/**************************************************************************/
/* NOTE to users: this is the FFTW self-test and benchmark program.
It is probably NOT a good place to learn FFTW usage, since it has a
lot of added complexity in order to exercise and test the full API,
etcetera. We suggest reading the manual. */
/**************************************************************************/
#include "bench-user.h"
#include <math.h>
#include <stdio.h>
#include <fftw3.h>
#include <string.h>
#define CONCAT(prefix, name) prefix ## name
#if defined(BENCHFFT_SINGLE)
#define FFTW(x) CONCAT(fftwf_, x)
#elif defined(BENCHFFT_LDOUBLE)
#define FFTW(x) CONCAT(fftwl_, x)
#else
#define FFTW(x) CONCAT(fftw_, x)
#endif
static const char *mkversion(void) { return FFTW(version); }
static const char *mkcc(void) { return FFTW(cc); }
static const char *mkcodelet_optim(void) { return FFTW(codelet_optim); }
BEGIN_BENCH_DOC
BENCH_DOC("name", "fftw3")
BENCH_DOCF("version", mkversion)
BENCH_DOCF("cc", mkcc)
BENCH_DOCF("codelet-optim", mkcodelet_optim)
END_BENCH_DOC
FFTW(plan) the_plan = 0;
static const char *wisdat = "wis.dat";
unsigned the_flags = 0;
int paranoid = 0;
int usewisdom = 0;
int havewisdom = 0;
int nthreads = 1;
int amnesia = 0;
extern void install_hook(void); /* in hook.c */
extern void uninstall_hook(void); /* in hook.c */
void useropt(const char *arg)
{
int x;
double y;
if (!strcmp(arg, "patient")) the_flags |= FFTW_PATIENT;
else if (!strcmp(arg, "estimate")) the_flags |= FFTW_ESTIMATE;
else if (!strcmp(arg, "estimatepat")) the_flags |= FFTW_ESTIMATE_PATIENT;
else if (!strcmp(arg, "exhaustive")) the_flags |= FFTW_EXHAUSTIVE;
else if (!strcmp(arg, "unaligned")) the_flags |= FFTW_UNALIGNED;
else if (!strcmp(arg, "nosimd")) the_flags |= FFTW_NO_SIMD;
else if (!strcmp(arg, "noindirectop")) the_flags |= FFTW_NO_INDIRECT_OP;
else if (sscanf(arg, "flag=%d", &x) == 1) the_flags |= x;
else if (!strcmp(arg, "paranoid")) paranoid = 1;
else if (!strcmp(arg, "wisdom")) usewisdom = 1;
else if (!strcmp(arg, "amnesia")) amnesia = 1;
else if (sscanf(arg, "nthreads=%d", &x) == 1) nthreads = x;
else if (sscanf(arg, "timelimit=%lg", &y) == 1) {
FFTW(set_timelimit)(y);
}
else fprintf(stderr, "unknown user option: %s. Ignoring.\n", arg);
}
void rdwisdom(void)
{
FILE *f;
double tim;
int success = 0;
if (havewisdom) return;
#ifdef HAVE_THREADS
BENCH_ASSERT(FFTW(init_threads)());
FFTW(plan_with_nthreads)(nthreads);
#endif
if (!usewisdom) return;
timer_start(USER_TIMER);
if ((f = fopen(wisdat, "r"))) {
if (!FFTW(import_wisdom_from_file)(f))
fprintf(stderr, "bench: ERROR reading wisdom\n");
else
success = 1;
fclose(f);
}
tim = timer_stop(USER_TIMER);
if (success) {
if (verbose > 1) printf("READ WISDOM (%g seconds): ", tim);
if (verbose > 3)
FFTW(export_wisdom_to_file)(stdout);
if (verbose > 1)
printf("\n");
}
havewisdom = 1;
}
void wrwisdom(void)
{
FILE *f;
double tim;
if (!havewisdom) return;
timer_start(USER_TIMER);
if ((f = fopen(wisdat, "w"))) {
FFTW(export_wisdom_to_file)(f);
fclose(f);
}
tim = timer_stop(USER_TIMER);
if (verbose > 1) printf("write wisdom took %g seconds\n", tim);
}
static FFTW(iodim) *bench_tensor_to_fftw_iodim(bench_tensor *t)
{
FFTW(iodim) *d;
int i;
BENCH_ASSERT(t->rnk >= 0);
if (t->rnk == 0) return 0;
d = (FFTW(iodim) *)bench_malloc(sizeof(FFTW(iodim)) * t->rnk);
for (i = 0; i < t->rnk; ++i) {
d[i].n = t->dims[i].n;
d[i].is = t->dims[i].is;
d[i].os = t->dims[i].os;
}
return d;
}
static void extract_reim_split(int sign, int size, bench_real *p,
bench_real **r, bench_real **i)
{
if (sign == FFTW_FORWARD) {
*r = p + 0;
*i = p + size;
} else {
*r = p + size;
*i = p + 0;
}
}
static int sizeof_problem(bench_problem *p)
{
return tensor_sz(p->sz) * tensor_sz(p->vecsz);
}
/* ouch */
static int expressible_as_api_many(bench_tensor *t)
{
int i;
BENCH_ASSERT(FINITE_RNK(t->rnk));
i = t->rnk - 1;
while (--i >= 0) {
bench_iodim *d = t->dims + i;
if (d[0].is % d[1].is) return 0;
if (d[0].os % d[1].os) return 0;
}
return 1;
}
static int *mkn(bench_tensor *t)
{
int *n = (int *) bench_malloc(sizeof(int *) * t->rnk);
int i;
for (i = 0; i < t->rnk; ++i)
n[i] = t->dims[i].n;
return n;
}
static void mknembed_many(bench_tensor *t, int **inembedp, int **onembedp)
{
int i;
bench_iodim *d;
int *inembed = (int *) bench_malloc(sizeof(int *) * t->rnk);
int *onembed = (int *) bench_malloc(sizeof(int *) * t->rnk);
BENCH_ASSERT(FINITE_RNK(t->rnk));
*inembedp = inembed; *onembedp = onembed;
i = t->rnk - 1;
while (--i >= 0) {
d = t->dims + i;
inembed[i+1] = d[0].is / d[1].is;
onembed[i+1] = d[0].os / d[1].os;
}
}
/* try to use the most appropriate API function. Big mess. */
static int imax(int a, int b) { return (a > b ? a : b); }
static int halfish_sizeof_problem(bench_problem *p)
{
int n2 = sizeof_problem(p);
if (FINITE_RNK(p->sz->rnk) && p->sz->rnk > 0)
n2 = (n2 / imax(p->sz->dims[p->sz->rnk - 1].n, 1)) *
(p->sz->dims[p->sz->rnk - 1].n / 2 + 1);
return n2;
}
static FFTW(plan) mkplan_real_split(bench_problem *p, int flags)
{
FFTW(plan) pln;
bench_tensor *sz = p->sz, *vecsz = p->vecsz;
FFTW(iodim) *dims, *howmany_dims;
bench_real *ri, *ii, *ro, *io;
int n2 = halfish_sizeof_problem(p);
extract_reim_split(FFTW_FORWARD, n2, (bench_real *) p->in, &ri, &ii);
extract_reim_split(FFTW_FORWARD, n2, (bench_real *) p->out, &ro, &io);
dims = bench_tensor_to_fftw_iodim(sz);
howmany_dims = bench_tensor_to_fftw_iodim(vecsz);
if (p->sign < 0) {
if (verbose > 2) printf("using plan_guru_split_dft_r2c\n");
pln = FFTW(plan_guru_split_dft_r2c)(sz->rnk, dims,
vecsz->rnk, howmany_dims,
ri, ro, io, flags);
}
else {
if (verbose > 2) printf("using plan_guru_split_dft_c2r\n");
pln = FFTW(plan_guru_split_dft_c2r)(sz->rnk, dims,
vecsz->rnk, howmany_dims,
ri, ii, ro, flags);
}
bench_free(dims);
bench_free(howmany_dims);
return pln;
}
static FFTW(plan) mkplan_real_interleaved(bench_problem *p, int flags)
{
FFTW(plan) pln;
bench_tensor *sz = p->sz, *vecsz = p->vecsz;
if (vecsz->rnk == 0 && tensor_unitstridep(sz)
&& tensor_real_rowmajorp(sz, p->sign, p->in_place))
goto api_simple;
if (vecsz->rnk == 1 && expressible_as_api_many(sz))
goto api_many;
goto api_guru;
api_simple:
switch (sz->rnk) {
case 1:
if (p->sign < 0) {
if (verbose > 2) printf("using plan_dft_r2c_1d\n");
return FFTW(plan_dft_r2c_1d)(sz->dims[0].n,
(bench_real *) p->in,
(bench_complex *) p->out,
flags);
}
else {
if (verbose > 2) printf("using plan_dft_c2r_1d\n");
return FFTW(plan_dft_c2r_1d)(sz->dims[0].n,
(bench_complex *) p->in,
(bench_real *) p->out,
flags);
}
break;
case 2:
if (p->sign < 0) {
if (verbose > 2) printf("using plan_dft_r2c_2d\n");
return FFTW(plan_dft_r2c_2d)(sz->dims[0].n, sz->dims[1].n,
(bench_real *) p->in,
(bench_complex *) p->out,
flags);
}
else {
if (verbose > 2) printf("using plan_dft_c2r_2d\n");
return FFTW(plan_dft_c2r_2d)(sz->dims[0].n, sz->dims[1].n,
(bench_complex *) p->in,
(bench_real *) p->out,
flags);
}
break;
case 3:
if (p->sign < 0) {
if (verbose > 2) printf("using plan_dft_r2c_3d\n");
return FFTW(plan_dft_r2c_3d)(
sz->dims[0].n, sz->dims[1].n, sz->dims[2].n,
(bench_real *) p->in, (bench_complex *) p->out,
flags);
}
else {
if (verbose > 2) printf("using plan_dft_c2r_3d\n");
return FFTW(plan_dft_c2r_3d)(
sz->dims[0].n, sz->dims[1].n, sz->dims[2].n,
(bench_complex *) p->in, (bench_real *) p->out,
flags);
}
break;
default: {
int *n = mkn(sz);
if (p->sign < 0) {
if (verbose > 2) printf("using plan_dft_r2c\n");
pln = FFTW(plan_dft_r2c)(sz->rnk, n,
(bench_real *) p->in,
(bench_complex *) p->out,
flags);
}
else {
if (verbose > 2) printf("using plan_dft_c2r\n");
pln = FFTW(plan_dft_c2r)(sz->rnk, n,
(bench_complex *) p->in,
(bench_real *) p->out,
flags);
}
bench_free(n);
return pln;
}
}
api_many:
{
int *n, *inembed, *onembed;
BENCH_ASSERT(vecsz->rnk == 1);
n = mkn(sz);
mknembed_many(sz, &inembed, &onembed);
if (p->sign < 0) {
if (verbose > 2) printf("using plan_many_dft_r2c\n");
pln = FFTW(plan_many_dft_r2c)(
sz->rnk, n, vecsz->dims[0].n,
(bench_real *) p->in, inembed,
sz->dims[sz->rnk - 1].is, vecsz->dims[0].is,
(bench_complex *) p->out, onembed,
sz->dims[sz->rnk - 1].os, vecsz->dims[0].os,
flags);
}
else {
if (verbose > 2) printf("using plan_many_dft_c2r\n");
pln = FFTW(plan_many_dft_c2r)(
sz->rnk, n, vecsz->dims[0].n,
(bench_complex *) p->in, inembed,
sz->dims[sz->rnk - 1].is, vecsz->dims[0].is,
(bench_real *) p->out, onembed,
sz->dims[sz->rnk - 1].os, vecsz->dims[0].os,
flags);
}
bench_free(n); bench_free(inembed); bench_free(onembed);
return pln;
}
api_guru:
{
FFTW(iodim) *dims, *howmany_dims;
if (p->sign < 0) {
dims = bench_tensor_to_fftw_iodim(sz);
howmany_dims = bench_tensor_to_fftw_iodim(vecsz);
if (verbose > 2) printf("using plan_guru_dft_r2c\n");
pln = FFTW(plan_guru_dft_r2c)(sz->rnk, dims,
vecsz->rnk, howmany_dims,
(bench_real *) p->in,
(bench_complex *) p->out,
flags);
}
else {
dims = bench_tensor_to_fftw_iodim(sz);
howmany_dims = bench_tensor_to_fftw_iodim(vecsz);
if (verbose > 2) printf("using plan_guru_dft_c2r\n");
pln = FFTW(plan_guru_dft_c2r)(sz->rnk, dims,
vecsz->rnk, howmany_dims,
(bench_complex *) p->in,
(bench_real *) p->out,
flags);
}
bench_free(dims);
bench_free(howmany_dims);
return pln;
}
}
static FFTW(plan) mkplan_real(bench_problem *p, int flags)
{
if (p->split)
return mkplan_real_split(p, flags);
else
return mkplan_real_interleaved(p, flags);
}
static FFTW(plan) mkplan_complex_split(bench_problem *p, int flags)
{
FFTW(plan) pln;
bench_tensor *sz = p->sz, *vecsz = p->vecsz;
FFTW(iodim) *dims, *howmany_dims;
bench_real *ri, *ii, *ro, *io;
int n = sizeof_problem(p);
extract_reim_split(p->sign, n, (bench_real *) p->in, &ri, &ii);
extract_reim_split(p->sign, n, (bench_real *) p->out, &ro, &io);
dims = bench_tensor_to_fftw_iodim(sz);
howmany_dims = bench_tensor_to_fftw_iodim(vecsz);
if (verbose > 2) printf("using plan_guru_split_dft\n");
pln = FFTW(plan_guru_split_dft)(sz->rnk, dims,
vecsz->rnk, howmany_dims,
ri, ii, ro, io, flags);
bench_free(dims);
bench_free(howmany_dims);
return pln;
}
static FFTW(plan) mkplan_complex_interleaved(bench_problem *p, int flags)
{
FFTW(plan) pln;
bench_tensor *sz = p->sz, *vecsz = p->vecsz;
if (vecsz->rnk == 0 && tensor_unitstridep(sz) && tensor_rowmajorp(sz))
goto api_simple;
if (vecsz->rnk == 1 && expressible_as_api_many(sz))
goto api_many;
goto api_guru;
api_simple:
switch (sz->rnk) {
case 1:
if (verbose > 2) printf("using plan_dft_1d\n");
return FFTW(plan_dft_1d)(sz->dims[0].n,
(bench_complex *) p->in,
(bench_complex *) p->out,
p->sign, flags);
break;
case 2:
if (verbose > 2) printf("using plan_dft_2d\n");
return FFTW(plan_dft_2d)(sz->dims[0].n, sz->dims[1].n,
(bench_complex *) p->in,
(bench_complex *) p->out,
p->sign, flags);
break;
case 3:
if (verbose > 2) printf("using plan_dft_3d\n");
return FFTW(plan_dft_3d)(
sz->dims[0].n, sz->dims[1].n, sz->dims[2].n,
(bench_complex *) p->in, (bench_complex *) p->out,
p->sign, flags);
break;
default: {
int *n = mkn(sz);
if (verbose > 2) printf("using plan_dft\n");
pln = FFTW(plan_dft)(sz->rnk, n,
(bench_complex *) p->in,
(bench_complex *) p->out, p->sign, flags);
bench_free(n);
return pln;
}
}
api_many:
{
int *n, *inembed, *onembed;
BENCH_ASSERT(vecsz->rnk == 1);
n = mkn(sz);
mknembed_many(sz, &inembed, &onembed);
if (verbose > 2) printf("using plan_many_dft\n");
pln = FFTW(plan_many_dft)(
sz->rnk, n, vecsz->dims[0].n,
(bench_complex *) p->in,
inembed, sz->dims[sz->rnk - 1].is, vecsz->dims[0].is,
(bench_complex *) p->out,
onembed, sz->dims[sz->rnk - 1].os, vecsz->dims[0].os,
p->sign, flags);
bench_free(n); bench_free(inembed); bench_free(onembed);
return pln;
}
api_guru:
{
FFTW(iodim) *dims, *howmany_dims;
dims = bench_tensor_to_fftw_iodim(sz);
howmany_dims = bench_tensor_to_fftw_iodim(vecsz);
if (verbose > 2) printf("using plan_guru_dft\n");
pln = FFTW(plan_guru_dft)(sz->rnk, dims,
vecsz->rnk, howmany_dims,
(bench_complex *) p->in,
(bench_complex *) p->out,
p->sign, flags);
bench_free(dims);
bench_free(howmany_dims);
return pln;
}
}
static FFTW(plan) mkplan_complex(bench_problem *p, int flags)
{
if (p->split)
return mkplan_complex_split(p, flags);
else
return mkplan_complex_interleaved(p, flags);
}
static FFTW(plan) mkplan_r2r(bench_problem *p, int flags)
{
FFTW(plan) pln;
bench_tensor *sz = p->sz, *vecsz = p->vecsz;
FFTW(r2r_kind) *k;
k = (FFTW(r2r_kind) *) bench_malloc(sizeof(FFTW(r2r_kind)) * sz->rnk);
{
int i;
for (i = 0; i < sz->rnk; ++i)
switch (p->k[i]) {
case R2R_R2HC: k[i] = FFTW_R2HC; break;
case R2R_HC2R: k[i] = FFTW_HC2R; break;
case R2R_DHT: k[i] = FFTW_DHT; break;
case R2R_REDFT00: k[i] = FFTW_REDFT00; break;
case R2R_REDFT01: k[i] = FFTW_REDFT01; break;
case R2R_REDFT10: k[i] = FFTW_REDFT10; break;
case R2R_REDFT11: k[i] = FFTW_REDFT11; break;
case R2R_RODFT00: k[i] = FFTW_RODFT00; break;
case R2R_RODFT01: k[i] = FFTW_RODFT01; break;
case R2R_RODFT10: k[i] = FFTW_RODFT10; break;
case R2R_RODFT11: k[i] = FFTW_RODFT11; break;
default: BENCH_ASSERT(0);
}
}
if (vecsz->rnk == 0 && tensor_unitstridep(sz) && tensor_rowmajorp(sz))
goto api_simple;
if (vecsz->rnk == 1 && expressible_as_api_many(sz))
goto api_many;
goto api_guru;
api_simple:
switch (sz->rnk) {
case 1:
if (verbose > 2) printf("using plan_r2r_1d\n");
pln = FFTW(plan_r2r_1d)(sz->dims[0].n,
(bench_real *) p->in,
(bench_real *) p->out,
k[0], flags);
goto done;
case 2:
if (verbose > 2) printf("using plan_r2r_2d\n");
pln = FFTW(plan_r2r_2d)(sz->dims[0].n, sz->dims[1].n,
(bench_real *) p->in,
(bench_real *) p->out,
k[0], k[1], flags);
goto done;
case 3:
if (verbose > 2) printf("using plan_r2r_3d\n");
pln = FFTW(plan_r2r_3d)(
sz->dims[0].n, sz->dims[1].n, sz->dims[2].n,
(bench_real *) p->in, (bench_real *) p->out,
k[0], k[1], k[2], flags);
goto done;
default: {
int *n = mkn(sz);
if (verbose > 2) printf("using plan_r2r\n");
pln = FFTW(plan_r2r)(sz->rnk, n,
(bench_real *) p->in, (bench_real *) p->out,
k, flags);
bench_free(n);
goto done;
}
}
api_many:
{
int *n, *inembed, *onembed;
BENCH_ASSERT(vecsz->rnk == 1);
n = mkn(sz);
mknembed_many(sz, &inembed, &onembed);
if (verbose > 2) printf("using plan_many_r2r\n");
pln = FFTW(plan_many_r2r)(
sz->rnk, n, vecsz->dims[0].n,
(bench_real *) p->in,
inembed, sz->dims[sz->rnk - 1].is, vecsz->dims[0].is,
(bench_real *) p->out,
onembed, sz->dims[sz->rnk - 1].os, vecsz->dims[0].os,
k, flags);
bench_free(n); bench_free(inembed); bench_free(onembed);
goto done;
}
api_guru:
{
FFTW(iodim) *dims, *howmany_dims;
dims = bench_tensor_to_fftw_iodim(sz);
howmany_dims = bench_tensor_to_fftw_iodim(vecsz);
if (verbose > 2) printf("using plan_guru_r2r\n");
pln = FFTW(plan_guru_r2r)(sz->rnk, dims,
vecsz->rnk, howmany_dims,
(bench_real *) p->in,
(bench_real *) p->out, k, flags);
bench_free(dims);
bench_free(howmany_dims);
goto done;
}
done:
bench_free(k);
return pln;
}
static FFTW(plan) mkplan(bench_problem *p, int flags)
{
switch (p->kind) {
case PROBLEM_COMPLEX: return mkplan_complex(p, flags);
case PROBLEM_REAL: return mkplan_real(p, flags);
case PROBLEM_R2R: return mkplan_r2r(p, flags);
default: BENCH_ASSERT(0); return 0;
}
}
static unsigned preserve_input_flags(bench_problem *p)
{
/*
* fftw3 cannot preserve input for multidimensional c2r transforms.
* Enforce FFTW_DESTROY_INPUT
*/
if (p->kind == PROBLEM_REAL &&
p->sign > 0 &&
!p->in_place &&
p->sz->rnk > 1)
p->destroy_input = 1;
if (p->destroy_input)
return FFTW_DESTROY_INPUT;
else
return FFTW_PRESERVE_INPUT;
}
int can_do(bench_problem *p)
{
double tim;
if (verbose > 2 && p->pstring)
printf("Planning %s...\n", p->pstring);
rdwisdom();
timer_start(USER_TIMER);
the_plan = mkplan(p, preserve_input_flags(p) | the_flags | FFTW_ESTIMATE);
tim = timer_stop(USER_TIMER);
if (verbose > 2) printf("estimate-planner time: %g s\n", tim);
if (the_plan) {
FFTW(destroy_plan)(the_plan);
return 1;
}
return 0;
}
void setup(bench_problem *p)
{
double tim;
if (amnesia)
FFTW(forget_wisdom)();
/* Regression test: check that fftw_malloc exists and links
* properly */
FFTW(free(FFTW(malloc(42))));
rdwisdom();
install_hook();
#ifdef HAVE_THREADS
if (verbose > 1 && nthreads > 1) printf("NTHREADS = %d\n", nthreads);
#endif
timer_start(USER_TIMER);
the_plan = mkplan(p, preserve_input_flags(p) | the_flags);
tim = timer_stop(USER_TIMER);
if (verbose > 1) printf("planner time: %g s\n", tim);
BENCH_ASSERT(the_plan);
if (verbose > 1) {
double add, mul, fma;
FFTW(print_plan)(the_plan);
printf("\n");
FFTW(flops)(the_plan, &add, &mul, &fma);
printf("flops: %0.0f add, %0.0f mul, %0.0f fma\n", add, mul, fma);
printf("estimated cost: %f\n", FFTW(estimate_cost)(the_plan));
}
}
void doit(int iter, bench_problem *p)
{
int i;
FFTW(plan) q = the_plan;
UNUSED(p);
for (i = 0; i < iter; ++i)
FFTW(execute)(q);
}
void done(bench_problem *p)
{
UNUSED(p);
FFTW(destroy_plan)(the_plan);
uninstall_hook();
}
void cleanup(void)
{
wrwisdom();
#ifdef HAVE_THREADS
FFTW(cleanup_threads)();
#else
FFTW(cleanup)();
#endif
# ifdef FFTW_DEBUG_MALLOC
{
/* undocumented memory checker */
FFTW_EXTERN void FFTW(malloc_print_minfo)(int v);
FFTW(malloc_print_minfo)(verbose);
}
# endif
}
|