1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
/*
* Copyright (c) 2003, 2007-8 Matteo Frigo
* Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include "rdft.h"
typedef struct {
solver super;
int maxnbuf_ndx;
} S;
static const INT maxnbufs[] = { 8, 256 };
typedef struct {
plan_rdft super;
plan *cld, *cldcpy, *cldrest;
INT n, vl, nbuf, bufdist;
INT ivs_by_nbuf, ovs_by_nbuf;
} P;
/* transform a vector input with the help of bufs */
static void apply(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
plan_rdft *cld = (plan_rdft *) ego->cld;
plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy;
plan_rdft *cldrest;
INT i, vl = ego->vl, nbuf = ego->nbuf;
INT ivs_by_nbuf = ego->ivs_by_nbuf, ovs_by_nbuf = ego->ovs_by_nbuf;
R *bufs;
bufs = (R *)MALLOC(sizeof(R) * nbuf * ego->bufdist, BUFFERS);
for (i = nbuf; i <= vl; i += nbuf) {
/* transform to bufs: */
cld->apply((plan *) cld, I, bufs);
I += ivs_by_nbuf;
/* copy back */
cldcpy->apply((plan *) cldcpy, bufs, O);
O += ovs_by_nbuf;
}
X(ifree)(bufs);
/* Do the remaining transforms, if any: */
cldrest = (plan_rdft *) ego->cldrest;
cldrest->apply((plan *) cldrest, I, O);
}
/* for hc2r problems, copy the input into buffer, and then
transform buffer->output, which allows for destruction of the
buffer */
static void apply_hc2r(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
plan_rdft *cld = (plan_rdft *) ego->cld;
plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy;
plan_rdft *cldrest;
INT i, vl = ego->vl, nbuf = ego->nbuf;
INT ivs_by_nbuf = ego->ivs_by_nbuf, ovs_by_nbuf = ego->ovs_by_nbuf;
R *bufs;
bufs = (R *)MALLOC(sizeof(R) * nbuf * ego->bufdist, BUFFERS);
for (i = nbuf; i <= vl; i += nbuf) {
/* copy input into bufs: */
cldcpy->apply((plan *) cldcpy, I, bufs);
I += ivs_by_nbuf;
/* transform to output */
cld->apply((plan *) cld, bufs, O);
O += ovs_by_nbuf;
}
X(ifree)(bufs);
/* Do the remaining transforms, if any: */
cldrest = (plan_rdft *) ego->cldrest;
cldrest->apply((plan *) cldrest, I, O);
}
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
X(plan_awake)(ego->cld, wakefulness);
X(plan_awake)(ego->cldcpy, wakefulness);
X(plan_awake)(ego->cldrest, wakefulness);
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cldrest);
X(plan_destroy_internal)(ego->cldcpy);
X(plan_destroy_internal)(ego->cld);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
p->print(p, "(rdft-buffered-%D%v/%D-%D%(%p%)%(%p%)%(%p%))",
ego->n, ego->nbuf,
ego->vl, ego->bufdist % ego->n,
ego->cld, ego->cldcpy, ego->cldrest);
}
static int applicable0(const S *ego, const problem *p_, const planner *plnr)
{
const problem_rdft *p = (const problem_rdft *) p_;
iodim *d = p->sz->dims;
if (1
&& p->vecsz->rnk <= 1
&& p->sz->rnk == 1
) {
INT vl, ivs, ovs;
X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);
if (X(toobig)(d[0].n) && CONSERVE_MEMORYP(plnr))
return 0;
/* if this solver is redundant, in the sense that a solver
of lower index generates the same plan, then prune this
solver */
if (X(nbuf_redundant)(d[0].n, vl,
ego->maxnbuf_ndx,
maxnbufs, NELEM(maxnbufs)))
return 0;
if (p->I != p->O) {
if (p->kind[0] == HC2R) {
/* Allow HC2R problems only if the input is to be
preserved. This solver sets NO_DESTROY_INPUT,
which prevents infinite loops */
return (NO_DESTROY_INPUTP(plnr));
} else {
/*
In principle, the buffered transforms might be useful
when working out of place. However, in order to
prevent infinite loops in the planner, we require
that the output stride of the buffered transforms be
greater than 1.
*/
return (d[0].os > 1);
}
}
/*
* If the problem is in place, the input/output strides must
* be the same or the whole thing must fit in the buffer.
*/
if (X(tensor_inplace_strides2)(p->sz, p->vecsz))
return 1;
if (/* fits into buffer: */
((p->vecsz->rnk == 0)
||
(X(nbuf)(d[0].n, p->vecsz->dims[0].n,
maxnbufs[ego->maxnbuf_ndx])
== p->vecsz->dims[0].n)))
return 1;
}
return 0;
}
static int applicable(const S *ego, const problem *p_, const planner *plnr)
{
const problem_rdft *p;
if (NO_BUFFERINGP(plnr)) return 0;
if (!applicable0(ego, p_, plnr)) return 0;
p = (const problem_rdft *) p_;
if (p->kind[0] == HC2R) {
if (NO_UGLYP(plnr)) {
/* UGLY if in-place and too big, since the problem
could be solved via transpositions */
if (p->I == p->O && X(toobig)(p->sz->dims[0].n))
return 0;
}
} else {
if (NO_UGLYP(plnr)) {
if (p->I != p->O) return 0;
if (X(toobig)(p->sz->dims[0].n)) return 0;
}
}
return 1;
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
P *pln;
const S *ego = (const S *)ego_;
plan *cld = (plan *) 0;
plan *cldcpy = (plan *) 0;
plan *cldrest = (plan *) 0;
const problem_rdft *p = (const problem_rdft *) p_;
R *bufs = (R *) 0;
INT nbuf = 0, bufdist, n, vl;
INT ivs, ovs;
int hc2rp;
static const plan_adt padt = {
X(rdft_solve), awake, print, destroy
};
if (!applicable(ego, p_, plnr))
goto nada;
n = X(tensor_sz)(p->sz);
X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);
hc2rp = (p->kind[0] == HC2R);
nbuf = X(nbuf)(n, vl, maxnbufs[ego->maxnbuf_ndx]);
bufdist = X(bufdist)(n, vl);
A(nbuf > 0);
/* initial allocation for the purpose of planning */
bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);
if (hc2rp) {
/* allow destruction of buffer */
cld = X(mkplan_f_d)(plnr,
X(mkproblem_rdft_d)(
X(mktensor_1d)(n, 1, p->sz->dims[0].os),
X(mktensor_1d)(nbuf, bufdist, ovs),
bufs, TAINT(p->O, ovs * nbuf), p->kind),
0, 0, NO_DESTROY_INPUT);
if (!cld) goto nada;
/* copying input into buffer buffer is a rank-0 transform: */
cldcpy = X(mkplan_d)(plnr,
X(mkproblem_rdft_0_d)(
X(mktensor_2d)(nbuf, ivs, bufdist,
n, p->sz->dims[0].is, 1),
TAINT(p->I, ivs * nbuf), bufs));
if (!cldcpy) goto nada;
} else {
/* allow destruction of input if problem is in place */
cld = X(mkplan_f_d)(plnr,
X(mkproblem_rdft_d)(
X(mktensor_1d)(n, p->sz->dims[0].is, 1),
X(mktensor_1d)(nbuf, ivs, bufdist),
TAINT(p->I, ivs * nbuf), bufs, p->kind),
0, 0, (p->I == p->O) ? NO_DESTROY_INPUT : 0);
if (!cld) goto nada;
/* copying back from the buffer is a rank-0 transform: */
cldcpy = X(mkplan_d)(plnr,
X(mkproblem_rdft_0_d)(
X(mktensor_2d)(nbuf, bufdist, ovs,
n, 1, p->sz->dims[0].os),
bufs, TAINT(p->O, ovs * nbuf)));
if (!cldcpy) goto nada;
}
/* deallocate buffers, let apply() allocate them for real */
X(ifree)(bufs);
bufs = 0;
/* plan the leftover transforms (cldrest): */
{
INT id = ivs * (nbuf * (vl / nbuf));
INT od = ovs * (nbuf * (vl / nbuf));
cldrest = X(mkplan_d)(plnr,
X(mkproblem_rdft_d)(
X(tensor_copy)(p->sz),
X(mktensor_1d)(vl % nbuf, ivs, ovs),
p->I + id, p->O + od, p->kind));
}
if (!cldrest) goto nada;
pln = MKPLAN_RDFT(P, &padt, hc2rp ? apply_hc2r : apply);
pln->cld = cld;
pln->cldcpy = cldcpy;
pln->cldrest = cldrest;
pln->n = n;
pln->vl = vl;
pln->ivs_by_nbuf = ivs * nbuf;
pln->ovs_by_nbuf = ovs * nbuf;
pln->nbuf = nbuf;
pln->bufdist = bufdist;
{
opcnt t;
X(ops_add)(&cld->ops, &cldcpy->ops, &t);
X(ops_madd)(vl / nbuf, &t, &cldrest->ops, &pln->super.super.ops);
}
return &(pln->super.super);
nada:
X(ifree0)(bufs);
X(plan_destroy_internal)(cldrest);
X(plan_destroy_internal)(cldcpy);
X(plan_destroy_internal)(cld);
return (plan *) 0;
}
static solver *mksolver(int maxnbuf_ndx)
{
static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
S *slv = MKSOLVER(S, &sadt);
slv->maxnbuf_ndx = maxnbuf_ndx;
return &(slv->super);
}
void X(rdft_buffered_register)(planner *p)
{
size_t i;
for (i = 0; i < NELEM(maxnbufs); ++i)
REGISTER_SOLVER(p, mksolver(i));
}
|