1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
/*
* Copyright (c) 2003, 2007-8 Matteo Frigo
* Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include "rdft.h"
typedef struct {
solver super;
rdft_kind kind;
} S;
typedef struct {
plan_rdft super;
twid *td;
INT n, is, os;
rdft_kind kind;
} P;
/***************************************************************************/
static void cdot_r2hc(INT n, const E *x, const R *w, R *or0, R *oi1)
{
INT i;
E rr = x[0], ri = 0;
x += 1;
for (i = 1; i + i < n; ++i) {
rr += x[0] * w[0];
ri += x[1] * w[1];
x += 2; w += 2;
}
*or0 = rr;
*oi1 = ri;
}
static void hartley_r2hc(INT n, const R *xr, INT xs, E *o, R *pr)
{
INT i;
E sr;
o[0] = sr = xr[0]; o += 1;
for (i = 1; i + i < n; ++i) {
R a, b;
a = xr[i * xs];
b = xr[(n - i) * xs];
sr += (o[0] = a + b);
#if FFT_SIGN == -1
o[1] = b - a;
#else
o[1] = a - b;
#endif
o += 2;
}
*pr = sr;
}
static void apply_r2hc(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
INT i;
INT n = ego->n, is = ego->is, os = ego->os;
const R *W = ego->td->W;
E *buf;
STACK_MALLOC(E *, buf, n * sizeof(E));
hartley_r2hc(n, I, is, buf, O);
for (i = 1; i + i < n; ++i) {
cdot_r2hc(n, buf, W, O + i * os, O + (n - i) * os);
W += n - 1;
}
STACK_FREE(buf);
}
static void cdot_hc2r(INT n, const E *x, const R *w, R *or0, R *or1)
{
INT i;
E rr = x[0], ii = 0;
x += 1;
for (i = 1; i + i < n; ++i) {
rr += x[0] * w[0];
ii += x[1] * w[1];
x += 2; w += 2;
}
#if FFT_SIGN == -1
*or0 = rr - ii;
*or1 = rr + ii;
#else
*or0 = rr + ii;
*or1 = rr - ii;
#endif
}
static void hartley_hc2r(INT n, const R *x, INT xs, E *o, R *pr)
{
INT i;
E sr;
o[0] = sr = x[0]; o += 1;
for (i = 1; i + i < n; ++i) {
sr += (o[0] = x[i * xs] + x[i * xs]);
o[1] = x[(n - i) * xs] + x[(n - i) * xs];
o += 2;
}
*pr = sr;
}
static void apply_hc2r(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
INT i;
INT n = ego->n, is = ego->is, os = ego->os;
const R *W = ego->td->W;
E *buf;
STACK_MALLOC(E *, buf, n * sizeof(E));
hartley_hc2r(n, I, is, buf, O);
for (i = 1; i + i < n; ++i) {
cdot_hc2r(n, buf, W, O + i * os, O + (n - i) * os);
W += n - 1;
}
STACK_FREE(buf);
}
/***************************************************************************/
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
static const tw_instr half_tw[] = {
{ TW_HALF, 1, 0 },
{ TW_NEXT, 1, 0 }
};
X(twiddle_awake)(wakefulness, &ego->td, half_tw, ego->n, ego->n,
(ego->n - 1) / 2);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
p->print(p, "(rdft-generic-%s-%D)",
ego->kind == R2HC ? "r2hc" : "hc2r",
ego->n);
}
static int applicable0(const S *ego, const problem *p_)
{
const problem_rdft *p = (const problem_rdft *) p_;
return (1
&& p->sz->rnk == 1
&& p->vecsz->rnk == 0
&& (p->sz->dims[0].n % 2) == 1
&& X(is_prime)(p->sz->dims[0].n)
&& p->kind[0] == ego->kind
);
}
static int applicable(const S *ego, const problem *p_,
const planner *plnr)
{
if (NO_SLOWP(plnr)) return 0;
if (!applicable0(ego, p_)) return 0;
if (NO_LARGE_GENERICP(plnr)) {
const problem_rdft *p = (const problem_rdft *) p_;
if (p->sz->dims[0].n >= GENERIC_MIN_BAD) return 0;
}
return 1;
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const S *ego = (const S *)ego_;
const problem_rdft *p;
P *pln;
INT n;
static const plan_adt padt = {
X(rdft_solve), awake, print, X(plan_null_destroy)
};
if (!applicable(ego, p_, plnr))
return (plan *)0;
p = (const problem_rdft *) p_;
pln = MKPLAN_RDFT(P, &padt,
R2HC_KINDP(p->kind[0]) ? apply_r2hc : apply_hc2r);
pln->n = n = p->sz->dims[0].n;
pln->is = p->sz->dims[0].is;
pln->os = p->sz->dims[0].os;
pln->td = 0;
pln->kind = ego->kind;
pln->super.super.ops.add = (n-1) * 2.5;
pln->super.super.ops.mul = 0;
pln->super.super.ops.fma = 0.5 * (n-1) * (n-1) ;
#if 0 /* these are nice pipelined sequential loads and should cost nothing */
pln->super.super.ops.other = (n-1)*(2 + 1 + (n-1)); /* approximate */
#endif
return &(pln->super.super);
}
static solver *mksolver(rdft_kind kind)
{
static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
S *slv = MKSOLVER(S, &sadt);
slv->kind = kind;
return &(slv->super);
}
void X(rdft_generic_register)(planner *p)
{
REGISTER_SOLVER(p, mksolver(R2HC));
REGISTER_SOLVER(p, mksolver(HC2R));
}
|