1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
(*
* Copyright (c) 1997-1999 Massachusetts Institute of Technology
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*)
(* Here, we define the data type encapsulating a symbolic arithmetic
expression, and provide some routines for manipulating it. *)
(* I will regret this hack : *)
(* NEWS: I did *)
type transcendent = I | MULTI_A | MULTI_B | CONJ
type expr =
| Num of Number.number
| NaN of transcendent
| Plus of expr list
| Times of expr * expr
| CTimes of expr * expr
| CTimesJ of expr * expr (* CTimesJ (a, b) = conj(a) * b *)
| Uminus of expr
| Load of Variable.variable
| Store of Variable.variable * expr
type assignment = Assign of Variable.variable * expr
(* various hash functions *)
let hash_float x =
let (mantissa, exponent) = frexp x
in truncate (float_of_int(exponent) *. 1234.567 +. mantissa *. 10000.0)
let sum_list l = List.fold_right (+) l 0
let transcendent_to_float = function
| I -> 2.718281828459045235360287471 (* any transcendent number will do *)
| MULTI_A -> 0.6931471805599453094172321214
| MULTI_B -> -0.3665129205816643270124391582
| CONJ -> 0.6019072301972345747375400015
let rec hash = function
| Num x -> hash_float (Number.to_float x)
| NaN x -> hash_float (transcendent_to_float x)
| Load v -> 1 + 1237 * Variable.hash v
| Store (v, x) -> 2 * Variable.hash v - 2345 * hash x
| Plus l -> 5 + 23451 * sum_list (List.map Hashtbl.hash l)
| Times (a, b) -> 41 + 31415 * (Hashtbl.hash a + Hashtbl.hash b)
| CTimes (a, b) -> 49 + 3245 * (Hashtbl.hash a + Hashtbl.hash b)
| CTimesJ (a, b) -> 31 + 3471 * (Hashtbl.hash a + Hashtbl.hash b)
| Uminus x -> 42 + 12345 * (hash x)
(* find all variables *)
let rec find_vars x =
match x with
| Load y -> [y]
| Plus l -> List.flatten (List.map find_vars l)
| Times (a, b) -> (find_vars a) @ (find_vars b)
| CTimes (a, b) -> (find_vars a) @ (find_vars b)
| CTimesJ (a, b) -> (find_vars a) @ (find_vars b)
| Uminus a -> find_vars a
| _ -> []
(* TRUE if expression is a constant *)
let is_constant = function
| Num _ -> true
| NaN _ -> true
| Load v -> Variable.is_constant v
| _ -> false
let is_known_constant = function
| Num _ -> true
| NaN _ -> true
| _ -> false
(* expr to string, used for debugging *)
let rec foldr_string_concat l =
match l with
[] -> ""
| [a] -> a
| a :: b -> a ^ " " ^ (foldr_string_concat b)
let string_of_transcendent = function
| I -> "I"
| MULTI_A -> "MULTI_A"
| MULTI_B -> "MULTI_B"
| CONJ -> "CONJ"
let rec to_string = function
| Load v -> Variable.unparse v
| Num n -> string_of_float (Number.to_float n)
| NaN n -> string_of_transcendent n
| Plus x -> "(+ " ^ (foldr_string_concat (List.map to_string x)) ^ ")"
| Times (a, b) -> "(* " ^ (to_string a) ^ " " ^ (to_string b) ^ ")"
| CTimes (a, b) -> "(c* " ^ (to_string a) ^ " " ^ (to_string b) ^ ")"
| CTimesJ (a, b) -> "(cj* " ^ (to_string a) ^ " " ^ (to_string b) ^ ")"
| Uminus a -> "(- " ^ (to_string a) ^ ")"
| Store (v, a) -> "(:= " ^ (Variable.unparse v) ^ " " ^
(to_string a) ^ ")"
let rec to_string_a d x =
if (d = 0) then "..." else match x with
| Load v -> Variable.unparse v
| Num n -> Number.to_konst n
| NaN n -> string_of_transcendent n
| Plus x -> "(+ " ^ (foldr_string_concat (List.map (to_string_a (d - 1)) x)) ^ ")"
| Times (a, b) -> "(* " ^ (to_string_a (d - 1) a) ^ " " ^ (to_string_a (d - 1) b) ^ ")"
| CTimes (a, b) -> "(c* " ^ (to_string_a (d - 1) a) ^ " " ^ (to_string_a (d - 1) b) ^ ")"
| CTimesJ (a, b) -> "(cj* " ^ (to_string_a (d - 1) a) ^ " " ^ (to_string_a (d - 1) b) ^ ")"
| Uminus a -> "(- " ^ (to_string_a (d-1) a) ^ ")"
| Store (v, a) -> "(:= " ^ (Variable.unparse v) ^ " " ^
(to_string_a (d-1) a) ^ ")"
let to_string = to_string_a 10
let assignment_to_string = function
| Assign (v, a) -> "(:= " ^ (Variable.unparse v) ^ " " ^ (to_string a) ^ ")"
let dump print = List.iter (fun x -> print ((assignment_to_string x) ^ "\n"))
(* find all constants in a given expression *)
let rec expr_to_constants = function
| Num n -> [n]
| Plus a -> List.flatten (List.map expr_to_constants a)
| Times (a, b) -> (expr_to_constants a) @ (expr_to_constants b)
| CTimes (a, b) -> (expr_to_constants a) @ (expr_to_constants b)
| CTimesJ (a, b) -> (expr_to_constants a) @ (expr_to_constants b)
| Uminus a -> expr_to_constants a
| _ -> []
let add_float_key_value list_so_far k =
if List.exists (fun k2 -> Number.equal k k2) list_so_far then
list_so_far
else
k :: list_so_far
let unique_constants = List.fold_left add_float_key_value []
|