1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* "MPI" DFTs where all of the data is on one processor...just
call through to serial API. */
#include "mpi-dft.h"
#include "dft/dft.h"
typedef struct {
plan_mpi_dft super;
plan *cld;
INT roff, ioff;
} P;
static void apply(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
plan_dft *cld;
INT roff = ego->roff, ioff = ego->ioff;
cld = (plan_dft *) ego->cld;
cld->apply(ego->cld, I+roff, I+ioff, O+roff, O+ioff);
}
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
X(plan_awake)(ego->cld, wakefulness);
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cld);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
p->print(p, "(mpi-dft-serial %(%p%))", ego->cld);
}
int XM(dft_serial_applicable)(const problem_mpi_dft *p)
{
return (1
&& p->flags == 0 /* TRANSPOSED/SCRAMBLED_IN/OUT not supported */
&& ((XM(is_local)(p->sz, IB) && XM(is_local)(p->sz, OB))
|| p->vn == 0));
}
static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
{
const problem_mpi_dft *p = (const problem_mpi_dft *) p_;
P *pln;
plan *cld;
int my_pe;
R *ri, *ii, *ro, *io;
static const plan_adt padt = {
XM(dft_solve), awake, print, destroy
};
UNUSED(ego);
/* check whether applicable: */
if (!XM(dft_serial_applicable)(p))
return (plan *) 0;
X(extract_reim)(p->sign, p->I, &ri, &ii);
X(extract_reim)(p->sign, p->O, &ro, &io);
MPI_Comm_rank(p->comm, &my_pe);
if (my_pe == 0 && p->vn > 0) {
int i, rnk = p->sz->rnk;
tensor *sz = X(mktensor)(p->sz->rnk);
sz->dims[rnk - 1].is = sz->dims[rnk - 1].os = 2 * p->vn;
sz->dims[rnk - 1].n = p->sz->dims[rnk - 1].n;
for (i = rnk - 1; i > 0; --i) {
sz->dims[i - 1].is = sz->dims[i - 1].os =
sz->dims[i].is * sz->dims[i].n;
sz->dims[i - 1].n = p->sz->dims[i - 1].n;
}
cld = X(mkplan_d)(plnr,
X(mkproblem_dft_d)(sz,
X(mktensor_1d)(p->vn, 2, 2),
ri, ii, ro, io));
}
else { /* idle process: make nop plan */
cld = X(mkplan_d)(plnr,
X(mkproblem_dft_d)(X(mktensor_0d)(),
X(mktensor_1d)(0,0,0),
ri, ii, ro, io));
}
if (XM(any_true)(!cld, p->comm)) return (plan *) 0;
pln = MKPLAN_MPI_DFT(P, &padt, apply);
pln->cld = cld;
pln->roff = ro - p->O;
pln->ioff = io - p->O;
X(ops_cpy)(&cld->ops, &pln->super.super.ops);
return &(pln->super.super);
}
static solver *mksolver(void)
{
static const solver_adt sadt = { PROBLEM_MPI_DFT, mkplan, 0 };
return MKSOLVER(solver, &sadt);
}
void XM(dft_serial_register)(planner *p)
{
REGISTER_SOLVER(p, mksolver());
}
|