File: rdft2-rank-geq2-transposed.c

package info (click to toggle)
fftw3 3.3.10-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 28,788 kB
  • sloc: ansic: 259,336; ml: 5,474; sh: 4,457; perl: 1,666; makefile: 1,126; fortran: 110
file content (287 lines) | stat: -rw-r--r-- 8,354 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

/* Real-input (r2c) DFTs of rank >= 2, for the case where we are distributed
   across the first dimension only, and the output is transposed both
   in data distribution and in ordering (for the first 2 dimensions).

   Conversely, real-output (c2r) DFTs where the input is transposed.

   We don't currently support transposed-input r2c or transposed-output
   c2r transforms. */

#include "mpi-rdft2.h"
#include "mpi-transpose.h"
#include "rdft/rdft.h"
#include "dft/dft.h"

typedef struct {
     solver super;
     int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
} S;

typedef struct {
     plan_mpi_rdft2 super;

     plan *cld1, *cldt, *cld2;
     INT vn;
     int preserve_input;
} P;

static void apply_r2c(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     plan_rdft2 *cld1;
     plan_dft *cld2;
     plan_rdft *cldt;
     
     /* RDFT2 local dimensions */
     cld1 = (plan_rdft2 *) ego->cld1;
     if (ego->preserve_input) {
	  cld1->apply(ego->cld1, I, I+ego->vn, O, O+1);
	  I = O;
     }
     else
	  cld1->apply(ego->cld1, I, I+ego->vn, I, I+1);

     /* global transpose */
     cldt = (plan_rdft *) ego->cldt;
     cldt->apply(ego->cldt, I, O);

     /* DFT final local dimension */
     cld2 = (plan_dft *) ego->cld2;
     cld2->apply(ego->cld2, O, O+1, O, O+1);
}

static void apply_c2r(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     plan_rdft2 *cld1;
     plan_dft *cld2;
     plan_rdft *cldt;
     
     /* IDFT local dimensions */
     cld2 = (plan_dft *) ego->cld2;
     if (ego->preserve_input) {
	  cld2->apply(ego->cld2, I+1, I, O+1, O);
	  I = O;
     }
     else
	  cld2->apply(ego->cld2, I+1, I, I+1, I);

     /* global transpose */
     cldt = (plan_rdft *) ego->cldt;
     cldt->apply(ego->cldt, I, O);

     /* RDFT2 final local dimension */
     cld1 = (plan_rdft2 *) ego->cld1;
     cld1->apply(ego->cld1, O, O+ego->vn, O, O+1);
}

static int applicable(const S *ego, const problem *p_,
		      const planner *plnr)
{
     const problem_mpi_rdft2 *p = (const problem_mpi_rdft2 *) p_;
     return (1
	     && p->sz->rnk > 1
	     && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
					  && p->I != p->O))
	     && ((p->flags == TRANSPOSED_OUT && p->kind == R2HC
		  && XM(is_local_after)(1, p->sz, IB)
		  && XM(is_local_after)(2, p->sz, OB)
		  && XM(num_blocks)(p->sz->dims[0].n, 
				    p->sz->dims[0].b[OB]) == 1)
		 || 
		 (p->flags == TRANSPOSED_IN && p->kind == HC2R
		  && XM(is_local_after)(1, p->sz, OB)
		  && XM(is_local_after)(2, p->sz, IB)
		  && XM(num_blocks)(p->sz->dims[0].n, 
				    p->sz->dims[0].b[IB]) == 1))
	     && (!NO_SLOWP(plnr) /* slow if rdft2-serial is applicable */
		 || !XM(rdft2_serial_applicable)(p))
	  );
}

static void awake(plan *ego_, enum wakefulness wakefulness)
{
     P *ego = (P *) ego_;
     X(plan_awake)(ego->cld1, wakefulness);
     X(plan_awake)(ego->cldt, wakefulness);
     X(plan_awake)(ego->cld2, wakefulness);
}

static void destroy(plan *ego_)
{
     P *ego = (P *) ego_;
     X(plan_destroy_internal)(ego->cld2);
     X(plan_destroy_internal)(ego->cldt);
     X(plan_destroy_internal)(ego->cld1);
}

static void print(const plan *ego_, printer *p)
{
     const P *ego = (const P *) ego_;
     p->print(p, "(mpi-rdft2-rank-geq2-transposed%s%(%p%)%(%p%)%(%p%))", 
	      ego->preserve_input==2 ?"/p":"",
	      ego->cld1, ego->cldt, ego->cld2);
}

static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
     const S *ego = (const S *) ego_;
     const problem_mpi_rdft2 *p;
     P *pln;
     plan *cld1 = 0, *cldt = 0, *cld2 = 0;
     R *r0, *r1, *cr, *ci, *ri, *ii, *ro, *io, *I, *O;
     tensor *sz;
     int i, my_pe, n_pes;
     INT nrest, n1, b1;
     static const plan_adt padt = {
          XM(rdft2_solve), awake, print, destroy
     };
     block_kind k1, k2;

     UNUSED(ego);

     if (!applicable(ego, p_, plnr))
          return (plan *) 0;

     p = (const problem_mpi_rdft2 *) p_;

     I = p->I; O = p->O;
     if (p->kind == R2HC) {
	  k1 = IB; k2 = OB;
          r1 = (r0 = I) + p->vn;
	  if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) {
	       ci = (cr = O) + 1;
	       I = O; 
	  }
	  else 
	       ci = (cr = I) + 1;
	  io = ii = (ro = ri = O) + 1;
     }
     else {
	  k1 = OB; k2 = IB;
	  r1 = (r0 = O) + p->vn;
	  ci = (cr = O) + 1;
	  if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) {
	       ri = (ii = I) + 1;
	       ro = (io = O) + 1;
	       I = O;
	  }
	  else
	       ro = ri = (io = ii = I) + 1;
     }

     MPI_Comm_rank(p->comm, &my_pe);
     MPI_Comm_size(p->comm, &n_pes);

     sz = X(mktensor)(p->sz->rnk - 1); /* tensor of last rnk-1 dimensions */
     i = p->sz->rnk - 2; A(i >= 0);
     sz->dims[i].n = p->sz->dims[i+1].n / 2 + 1;
     sz->dims[i].is = sz->dims[i].os = 2 * p->vn;
     for (--i; i >= 0; --i) {
	  sz->dims[i].n = p->sz->dims[i+1].n;
	  sz->dims[i].is = sz->dims[i].os = sz->dims[i+1].n * sz->dims[i+1].is;
     }
     nrest = 1; for (i = 1; i < sz->rnk; ++i) nrest *= sz->dims[i].n;
     {
	  INT ivs = 1 + (p->kind == HC2R), ovs = 1 + (p->kind == R2HC);
          INT is = sz->dims[0].n * sz->dims[0].is;
          INT b = XM(block)(p->sz->dims[0].n, p->sz->dims[0].b[k1], my_pe);
	  sz->dims[p->sz->rnk - 2].n = p->sz->dims[p->sz->rnk - 1].n;
	  cld1 = X(mkplan_d)(plnr,
                             X(mkproblem_rdft2_d)(sz,
						  X(mktensor_2d)(b, is, is,
								p->vn,ivs,ovs),
						  r0, r1, cr, ci, p->kind));
	  if (XM(any_true)(!cld1, p->comm)) goto nada;
     }

     nrest *= p->vn;
     n1 = p->sz->dims[1].n;
     b1 = p->sz->dims[1].b[k2];
     if (p->sz->rnk == 2) { /* n1 dimension is cut in ~half */
	  n1 = n1 / 2 + 1;
	  b1 = b1 == p->sz->dims[1].n ? n1 : b1;
     }

     if (p->kind == R2HC)
	  cldt = X(mkplan_d)(plnr,
			     XM(mkproblem_transpose)(
				  p->sz->dims[0].n, n1, nrest * 2,
				  I, O,
				  p->sz->dims[0].b[IB], b1,
				  p->comm, 0));
     else
	  cldt = X(mkplan_d)(plnr,
			     XM(mkproblem_transpose)(
				  n1, p->sz->dims[0].n, nrest * 2,
				  I, O,
				  b1, p->sz->dims[0].b[OB], 
				  p->comm, 0));
     if (XM(any_true)(!cldt, p->comm)) goto nada;

     {
	  INT is = p->sz->dims[0].n * nrest * 2;
	  INT b = XM(block)(n1, b1, my_pe);
	  cld2 = X(mkplan_d)(plnr,
			     X(mkproblem_dft_d)(X(mktensor_1d)(
						     p->sz->dims[0].n,
						     nrest * 2, nrest * 2),
						X(mktensor_2d)(b, is, is,
							       nrest, 2, 2),
						ri, ii, ro, io));
	  if (XM(any_true)(!cld2, p->comm)) goto nada;
     }

     pln = MKPLAN_MPI_RDFT2(P, &padt, p->kind == R2HC ? apply_r2c : apply_c2r);
     pln->cld1 = cld1;
     pln->cldt = cldt;
     pln->cld2 = cld2;
     pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
     pln->vn = p->vn;

     X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
     X(ops_add2)(&cldt->ops, &pln->super.super.ops);

     return &(pln->super.super);

 nada:
     X(plan_destroy_internal)(cld2);
     X(plan_destroy_internal)(cldt);
     X(plan_destroy_internal)(cld1);
     return (plan *) 0;
}

static solver *mksolver(int preserve_input)
{
     static const solver_adt sadt = { PROBLEM_MPI_RDFT2, mkplan, 0 };
     S *slv = MKSOLVER(S, &sadt);
     slv->preserve_input = preserve_input;
     return &(slv->super);
}

void XM(rdft2_rank_geq2_transposed_register)(planner *p)
{
     int preserve_input;
     for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
	  REGISTER_SOLVER(p, mksolver(preserve_input));
}