1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
/* Real-input (r2c) DFTs of rank >= 2, for the case where we are distributed
across the first dimension only, and the output is transposed both
in data distribution and in ordering (for the first 2 dimensions).
Conversely, real-output (c2r) DFTs where the input is transposed.
We don't currently support transposed-input r2c or transposed-output
c2r transforms. */
#include "mpi-rdft2.h"
#include "mpi-transpose.h"
#include "rdft/rdft.h"
#include "dft/dft.h"
typedef struct {
solver super;
int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
} S;
typedef struct {
plan_mpi_rdft2 super;
plan *cld1, *cldt, *cld2;
INT vn;
int preserve_input;
} P;
static void apply_r2c(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
plan_rdft2 *cld1;
plan_dft *cld2;
plan_rdft *cldt;
/* RDFT2 local dimensions */
cld1 = (plan_rdft2 *) ego->cld1;
if (ego->preserve_input) {
cld1->apply(ego->cld1, I, I+ego->vn, O, O+1);
I = O;
}
else
cld1->apply(ego->cld1, I, I+ego->vn, I, I+1);
/* global transpose */
cldt = (plan_rdft *) ego->cldt;
cldt->apply(ego->cldt, I, O);
/* DFT final local dimension */
cld2 = (plan_dft *) ego->cld2;
cld2->apply(ego->cld2, O, O+1, O, O+1);
}
static void apply_c2r(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
plan_rdft2 *cld1;
plan_dft *cld2;
plan_rdft *cldt;
/* IDFT local dimensions */
cld2 = (plan_dft *) ego->cld2;
if (ego->preserve_input) {
cld2->apply(ego->cld2, I+1, I, O+1, O);
I = O;
}
else
cld2->apply(ego->cld2, I+1, I, I+1, I);
/* global transpose */
cldt = (plan_rdft *) ego->cldt;
cldt->apply(ego->cldt, I, O);
/* RDFT2 final local dimension */
cld1 = (plan_rdft2 *) ego->cld1;
cld1->apply(ego->cld1, O, O+ego->vn, O, O+1);
}
static int applicable(const S *ego, const problem *p_,
const planner *plnr)
{
const problem_mpi_rdft2 *p = (const problem_mpi_rdft2 *) p_;
return (1
&& p->sz->rnk > 1
&& (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
&& p->I != p->O))
&& ((p->flags == TRANSPOSED_OUT && p->kind == R2HC
&& XM(is_local_after)(1, p->sz, IB)
&& XM(is_local_after)(2, p->sz, OB)
&& XM(num_blocks)(p->sz->dims[0].n,
p->sz->dims[0].b[OB]) == 1)
||
(p->flags == TRANSPOSED_IN && p->kind == HC2R
&& XM(is_local_after)(1, p->sz, OB)
&& XM(is_local_after)(2, p->sz, IB)
&& XM(num_blocks)(p->sz->dims[0].n,
p->sz->dims[0].b[IB]) == 1))
&& (!NO_SLOWP(plnr) /* slow if rdft2-serial is applicable */
|| !XM(rdft2_serial_applicable)(p))
);
}
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
X(plan_awake)(ego->cld1, wakefulness);
X(plan_awake)(ego->cldt, wakefulness);
X(plan_awake)(ego->cld2, wakefulness);
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cld2);
X(plan_destroy_internal)(ego->cldt);
X(plan_destroy_internal)(ego->cld1);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
p->print(p, "(mpi-rdft2-rank-geq2-transposed%s%(%p%)%(%p%)%(%p%))",
ego->preserve_input==2 ?"/p":"",
ego->cld1, ego->cldt, ego->cld2);
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const S *ego = (const S *) ego_;
const problem_mpi_rdft2 *p;
P *pln;
plan *cld1 = 0, *cldt = 0, *cld2 = 0;
R *r0, *r1, *cr, *ci, *ri, *ii, *ro, *io, *I, *O;
tensor *sz;
int i, my_pe, n_pes;
INT nrest, n1, b1;
static const plan_adt padt = {
XM(rdft2_solve), awake, print, destroy
};
block_kind k1, k2;
UNUSED(ego);
if (!applicable(ego, p_, plnr))
return (plan *) 0;
p = (const problem_mpi_rdft2 *) p_;
I = p->I; O = p->O;
if (p->kind == R2HC) {
k1 = IB; k2 = OB;
r1 = (r0 = I) + p->vn;
if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) {
ci = (cr = O) + 1;
I = O;
}
else
ci = (cr = I) + 1;
io = ii = (ro = ri = O) + 1;
}
else {
k1 = OB; k2 = IB;
r1 = (r0 = O) + p->vn;
ci = (cr = O) + 1;
if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) {
ri = (ii = I) + 1;
ro = (io = O) + 1;
I = O;
}
else
ro = ri = (io = ii = I) + 1;
}
MPI_Comm_rank(p->comm, &my_pe);
MPI_Comm_size(p->comm, &n_pes);
sz = X(mktensor)(p->sz->rnk - 1); /* tensor of last rnk-1 dimensions */
i = p->sz->rnk - 2; A(i >= 0);
sz->dims[i].n = p->sz->dims[i+1].n / 2 + 1;
sz->dims[i].is = sz->dims[i].os = 2 * p->vn;
for (--i; i >= 0; --i) {
sz->dims[i].n = p->sz->dims[i+1].n;
sz->dims[i].is = sz->dims[i].os = sz->dims[i+1].n * sz->dims[i+1].is;
}
nrest = 1; for (i = 1; i < sz->rnk; ++i) nrest *= sz->dims[i].n;
{
INT ivs = 1 + (p->kind == HC2R), ovs = 1 + (p->kind == R2HC);
INT is = sz->dims[0].n * sz->dims[0].is;
INT b = XM(block)(p->sz->dims[0].n, p->sz->dims[0].b[k1], my_pe);
sz->dims[p->sz->rnk - 2].n = p->sz->dims[p->sz->rnk - 1].n;
cld1 = X(mkplan_d)(plnr,
X(mkproblem_rdft2_d)(sz,
X(mktensor_2d)(b, is, is,
p->vn,ivs,ovs),
r0, r1, cr, ci, p->kind));
if (XM(any_true)(!cld1, p->comm)) goto nada;
}
nrest *= p->vn;
n1 = p->sz->dims[1].n;
b1 = p->sz->dims[1].b[k2];
if (p->sz->rnk == 2) { /* n1 dimension is cut in ~half */
n1 = n1 / 2 + 1;
b1 = b1 == p->sz->dims[1].n ? n1 : b1;
}
if (p->kind == R2HC)
cldt = X(mkplan_d)(plnr,
XM(mkproblem_transpose)(
p->sz->dims[0].n, n1, nrest * 2,
I, O,
p->sz->dims[0].b[IB], b1,
p->comm, 0));
else
cldt = X(mkplan_d)(plnr,
XM(mkproblem_transpose)(
n1, p->sz->dims[0].n, nrest * 2,
I, O,
b1, p->sz->dims[0].b[OB],
p->comm, 0));
if (XM(any_true)(!cldt, p->comm)) goto nada;
{
INT is = p->sz->dims[0].n * nrest * 2;
INT b = XM(block)(n1, b1, my_pe);
cld2 = X(mkplan_d)(plnr,
X(mkproblem_dft_d)(X(mktensor_1d)(
p->sz->dims[0].n,
nrest * 2, nrest * 2),
X(mktensor_2d)(b, is, is,
nrest, 2, 2),
ri, ii, ro, io));
if (XM(any_true)(!cld2, p->comm)) goto nada;
}
pln = MKPLAN_MPI_RDFT2(P, &padt, p->kind == R2HC ? apply_r2c : apply_c2r);
pln->cld1 = cld1;
pln->cldt = cldt;
pln->cld2 = cld2;
pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);
pln->vn = p->vn;
X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
X(ops_add2)(&cldt->ops, &pln->super.super.ops);
return &(pln->super.super);
nada:
X(plan_destroy_internal)(cld2);
X(plan_destroy_internal)(cldt);
X(plan_destroy_internal)(cld1);
return (plan *) 0;
}
static solver *mksolver(int preserve_input)
{
static const solver_adt sadt = { PROBLEM_MPI_RDFT2, mkplan, 0 };
S *slv = MKSOLVER(S, &sadt);
slv->preserve_input = preserve_input;
return &(slv->super);
}
void XM(rdft2_rank_geq2_transposed_register)(planner *p)
{
int preserve_input;
for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
REGISTER_SOLVER(p, mksolver(preserve_input));
}
|