1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "rdft/rdft.h"
/*
* Compute DHTs of prime sizes using Rader's trick: turn them
* into convolutions of size n - 1, which we then perform via a pair
* of FFTs. (We can then do prime real FFTs via rdft-dht.c.)
*
* Optionally (determined by the "pad" field of the solver), we can
* perform the (cyclic) convolution by zero-padding to a size
* >= 2*(n-1) - 1. This is advantageous if n-1 has large prime factors.
*
*/
typedef struct {
solver super;
int pad;
} S;
typedef struct {
plan_rdft super;
plan *cld1, *cld2;
R *omega;
INT n, npad, g, ginv;
INT is, os;
plan *cld_omega;
} P;
static rader_tl *omegas = 0;
/***************************************************************************/
/* If R2HC_ONLY_CONV is 1, we use a trick to perform the convolution
purely in terms of R2HC transforms, as opposed to R2HC followed by H2RC.
This requires a few more operations, but allows us to share the same
plan/codelets for both Rader children. */
#define R2HC_ONLY_CONV 1
static void apply(const plan *ego_, R *I, R *O)
{
const P *ego = (const P *) ego_;
INT n = ego->n; /* prime */
INT npad = ego->npad; /* == n - 1 for unpadded Rader; always even */
INT is = ego->is, os;
INT k, gpower, g;
R *buf, *omega;
R r0;
buf = (R *) MALLOC(sizeof(R) * npad, BUFFERS);
/* First, permute the input, storing in buf: */
g = ego->g;
for (gpower = 1, k = 0; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) {
buf[k] = I[gpower * is];
}
/* gpower == g^(n-1) mod n == 1 */;
A(n - 1 <= npad);
for (k = n - 1; k < npad; ++k) /* optionally, zero-pad convolution */
buf[k] = 0;
os = ego->os;
/* compute RDFT of buf, storing in buf (i.e., in-place): */
{
plan_rdft *cld = (plan_rdft *) ego->cld1;
cld->apply((plan *) cld, buf, buf);
}
/* set output DC component: */
O[0] = (r0 = I[0]) + buf[0];
/* now, multiply by omega: */
omega = ego->omega;
buf[0] *= omega[0];
for (k = 1; k < npad/2; ++k) {
E rB, iB, rW, iW, a, b;
rW = omega[k];
iW = omega[npad - k];
rB = buf[k];
iB = buf[npad - k];
a = rW * rB - iW * iB;
b = rW * iB + iW * rB;
#if R2HC_ONLY_CONV
buf[k] = a + b;
buf[npad - k] = a - b;
#else
buf[k] = a;
buf[npad - k] = b;
#endif
}
/* Nyquist component: */
A(k + k == npad); /* since npad is even */
buf[k] *= omega[k];
/* this will add input[0] to all of the outputs after the ifft */
buf[0] += r0;
/* inverse FFT: */
{
plan_rdft *cld = (plan_rdft *) ego->cld2;
cld->apply((plan *) cld, buf, buf);
}
/* do inverse permutation to unshuffle the output: */
A(gpower == 1);
#if R2HC_ONLY_CONV
O[os] = buf[0];
gpower = g = ego->ginv;
A(npad == n - 1 || npad/2 >= n - 1);
if (npad == n - 1) {
for (k = 1; k < npad/2; ++k, gpower = MULMOD(gpower, g, n)) {
O[gpower * os] = buf[k] + buf[npad - k];
}
O[gpower * os] = buf[k];
++k, gpower = MULMOD(gpower, g, n);
for (; k < npad; ++k, gpower = MULMOD(gpower, g, n)) {
O[gpower * os] = buf[npad - k] - buf[k];
}
}
else {
for (k = 1; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) {
O[gpower * os] = buf[k] + buf[npad - k];
}
}
#else
g = ego->ginv;
for (k = 0; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) {
O[gpower * os] = buf[k];
}
#endif
A(gpower == 1);
X(ifree)(buf);
}
static R *mkomega(enum wakefulness wakefulness,
plan *p_, INT n, INT npad, INT ginv)
{
plan_rdft *p = (plan_rdft *) p_;
R *omega;
INT i, gpower;
trigreal scale;
triggen *t;
if ((omega = X(rader_tl_find)(n, npad + 1, ginv, omegas)))
return omega;
omega = (R *)MALLOC(sizeof(R) * npad, TWIDDLES);
scale = npad; /* normalization for convolution */
t = X(mktriggen)(wakefulness, n);
for (i = 0, gpower = 1; i < n-1; ++i, gpower = MULMOD(gpower, ginv, n)) {
trigreal w[2];
t->cexpl(t, gpower, w);
omega[i] = (w[0] + w[1]) / scale;
}
X(triggen_destroy)(t);
A(gpower == 1);
A(npad == n - 1 || npad >= 2*(n - 1) - 1);
for (; i < npad; ++i)
omega[i] = K(0.0);
if (npad > n - 1)
for (i = 1; i < n-1; ++i)
omega[npad - i] = omega[n - 1 - i];
p->apply(p_, omega, omega);
X(rader_tl_insert)(n, npad + 1, ginv, omega, &omegas);
return omega;
}
static void free_omega(R *omega)
{
X(rader_tl_delete)(omega, &omegas);
}
/***************************************************************************/
static void awake(plan *ego_, enum wakefulness wakefulness)
{
P *ego = (P *) ego_;
X(plan_awake)(ego->cld1, wakefulness);
X(plan_awake)(ego->cld2, wakefulness);
X(plan_awake)(ego->cld_omega, wakefulness);
switch (wakefulness) {
case SLEEPY:
free_omega(ego->omega);
ego->omega = 0;
break;
default:
ego->g = X(find_generator)(ego->n);
ego->ginv = X(power_mod)(ego->g, ego->n - 2, ego->n);
A(MULMOD(ego->g, ego->ginv, ego->n) == 1);
A(!ego->omega);
ego->omega = mkomega(wakefulness,
ego->cld_omega,ego->n,ego->npad,ego->ginv);
break;
}
}
static void destroy(plan *ego_)
{
P *ego = (P *) ego_;
X(plan_destroy_internal)(ego->cld_omega);
X(plan_destroy_internal)(ego->cld2);
X(plan_destroy_internal)(ego->cld1);
}
static void print(const plan *ego_, printer *p)
{
const P *ego = (const P *) ego_;
p->print(p, "(dht-rader-%D/%D%ois=%oos=%(%p%)",
ego->n, ego->npad, ego->is, ego->os, ego->cld1);
if (ego->cld2 != ego->cld1)
p->print(p, "%(%p%)", ego->cld2);
if (ego->cld_omega != ego->cld1 && ego->cld_omega != ego->cld2)
p->print(p, "%(%p%)", ego->cld_omega);
p->putchr(p, ')');
}
static int applicable(const solver *ego, const problem *p_, const planner *plnr)
{
const problem_rdft *p = (const problem_rdft *) p_;
UNUSED(ego);
return (1
&& p->sz->rnk == 1
&& p->vecsz->rnk == 0
&& p->kind[0] == DHT
&& X(is_prime)(p->sz->dims[0].n)
&& p->sz->dims[0].n > 2
&& CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > RADER_MAX_SLOW)
/* proclaim the solver SLOW if p-1 is not easily
factorizable. Unlike in the complex case where
Bluestein can solve the problem, in the DHT case we
may have no other choice */
&& CIMPLIES(NO_SLOWP(plnr), X(factors_into_small_primes)(p->sz->dims[0].n - 1))
);
}
static INT choose_transform_size(INT minsz)
{
static const INT primes[] = { 2, 3, 5, 0 };
while (!X(factors_into)(minsz, primes) || minsz % 2)
++minsz;
return minsz;
}
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
const S *ego = (const S *) ego_;
const problem_rdft *p = (const problem_rdft *) p_;
P *pln;
INT n, npad;
INT is, os;
plan *cld1 = (plan *) 0;
plan *cld2 = (plan *) 0;
plan *cld_omega = (plan *) 0;
R *buf = (R *) 0;
problem *cldp;
static const plan_adt padt = {
X(rdft_solve), awake, print, destroy
};
if (!applicable(ego_, p_, plnr))
return (plan *) 0;
n = p->sz->dims[0].n;
is = p->sz->dims[0].is;
os = p->sz->dims[0].os;
if (ego->pad)
npad = choose_transform_size(2 * (n - 1) - 1);
else
npad = n - 1;
/* initial allocation for the purpose of planning */
buf = (R *) MALLOC(sizeof(R) * npad, BUFFERS);
cld1 = X(mkplan_f_d)(plnr,
X(mkproblem_rdft_1_d)(X(mktensor_1d)(npad, 1, 1),
X(mktensor_1d)(1, 0, 0),
buf, buf,
R2HC),
NO_SLOW, 0, 0);
if (!cld1) goto nada;
cldp =
X(mkproblem_rdft_1_d)(
X(mktensor_1d)(npad, 1, 1),
X(mktensor_1d)(1, 0, 0),
buf, buf,
#if R2HC_ONLY_CONV
R2HC
#else
HC2R
#endif
);
if (!(cld2 = X(mkplan_f_d)(plnr, cldp, NO_SLOW, 0, 0)))
goto nada;
/* plan for omega */
cld_omega = X(mkplan_f_d)(plnr,
X(mkproblem_rdft_1_d)(
X(mktensor_1d)(npad, 1, 1),
X(mktensor_1d)(1, 0, 0),
buf, buf, R2HC),
NO_SLOW, ESTIMATE, 0);
if (!cld_omega) goto nada;
/* deallocate buffers; let awake() or apply() allocate them for real */
X(ifree)(buf);
buf = 0;
pln = MKPLAN_RDFT(P, &padt, apply);
pln->cld1 = cld1;
pln->cld2 = cld2;
pln->cld_omega = cld_omega;
pln->omega = 0;
pln->n = n;
pln->npad = npad;
pln->is = is;
pln->os = os;
X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
pln->super.super.ops.other += (npad/2-1)*6 + npad + n + (n-1) * ego->pad;
pln->super.super.ops.add += (npad/2-1)*2 + 2 + (n-1) * ego->pad;
pln->super.super.ops.mul += (npad/2-1)*4 + 2 + ego->pad;
#if R2HC_ONLY_CONV
pln->super.super.ops.other += n-2 - ego->pad;
pln->super.super.ops.add += (npad/2-1)*2 + (n-2) - ego->pad;
#endif
return &(pln->super.super);
nada:
X(ifree0)(buf);
X(plan_destroy_internal)(cld_omega);
X(plan_destroy_internal)(cld2);
X(plan_destroy_internal)(cld1);
return 0;
}
/* constructors */
static solver *mksolver(int pad)
{
static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
S *slv = MKSOLVER(S, &sadt);
slv->pad = pad;
return &(slv->super);
}
void X(dht_rader_register)(planner *p)
{
REGISTER_SOLVER(p, mksolver(0));
REGISTER_SOLVER(p, mksolver(1));
}
|