1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "dft/dft.h"
#include "rdft/rdft.h"
#include <stddef.h>
static void destroy(problem *ego_)
{
problem_rdft2 *ego = (problem_rdft2 *) ego_;
X(tensor_destroy2)(ego->vecsz, ego->sz);
X(ifree)(ego_);
}
static void hash(const problem *p_, md5 *m)
{
const problem_rdft2 *p = (const problem_rdft2 *) p_;
X(md5puts)(m, "rdft2");
X(md5int)(m, p->r0 == p->cr);
X(md5INT)(m, p->r1 - p->r0);
X(md5INT)(m, p->ci - p->cr);
X(md5int)(m, X(ialignment_of)(p->r0));
X(md5int)(m, X(ialignment_of)(p->r1));
X(md5int)(m, X(ialignment_of)(p->cr));
X(md5int)(m, X(ialignment_of)(p->ci));
X(md5int)(m, p->kind);
X(tensor_md5)(m, p->sz);
X(tensor_md5)(m, p->vecsz);
}
static void print(const problem *ego_, printer *p)
{
const problem_rdft2 *ego = (const problem_rdft2 *) ego_;
p->print(p, "(rdft2 %d %d %T %T)",
(int)(ego->cr == ego->r0),
(int)(ego->kind),
ego->sz,
ego->vecsz);
}
static void recur(const iodim *dims, int rnk, R *I0, R *I1)
{
if (rnk == RNK_MINFTY)
return;
else if (rnk == 0)
I0[0] = K(0.0);
else if (rnk > 0) {
INT i, n = dims[0].n, is = dims[0].is;
if (rnk == 1) {
for (i = 0; i < n - 1; i += 2) {
*I0 = *I1 = K(0.0);
I0 += is; I1 += is;
}
if (i < n)
*I0 = K(0.0);
} else {
for (i = 0; i < n; ++i)
recur(dims + 1, rnk - 1, I0 + i * is, I1 + i * is);
}
}
}
static void vrecur(const iodim *vdims, int vrnk,
const iodim *dims, int rnk, R *I0, R *I1)
{
if (vrnk == RNK_MINFTY)
return;
else if (vrnk == 0)
recur(dims, rnk, I0, I1);
else if (vrnk > 0) {
INT i, n = vdims[0].n, is = vdims[0].is;
for (i = 0; i < n; ++i)
vrecur(vdims + 1, vrnk - 1,
dims, rnk, I0 + i * is, I1 + i * is);
}
}
INT X(rdft2_complex_n)(INT real_n, rdft_kind kind)
{
switch (kind) {
case R2HC:
case HC2R:
return (real_n / 2) + 1;
case R2HCII:
case HC2RIII:
return (real_n + 1) / 2;
default:
/* can't happen */
A(0);
return 0;
}
}
static void zero(const problem *ego_)
{
const problem_rdft2 *ego = (const problem_rdft2 *) ego_;
if (R2HC_KINDP(ego->kind)) {
/* FIXME: can we avoid the double recursion somehow? */
vrecur(ego->vecsz->dims, ego->vecsz->rnk,
ego->sz->dims, ego->sz->rnk,
UNTAINT(ego->r0), UNTAINT(ego->r1));
} else {
tensor *sz;
tensor *sz2 = X(tensor_copy)(ego->sz);
int rnk = sz2->rnk;
if (rnk > 0) /* ~half as many complex outputs */
sz2->dims[rnk-1].n =
X(rdft2_complex_n)(sz2->dims[rnk-1].n, ego->kind);
sz = X(tensor_append)(ego->vecsz, sz2);
X(tensor_destroy)(sz2);
X(dft_zerotens)(sz, UNTAINT(ego->cr), UNTAINT(ego->ci));
X(tensor_destroy)(sz);
}
}
static const problem_adt padt =
{
PROBLEM_RDFT2,
hash,
zero,
print,
destroy
};
problem *X(mkproblem_rdft2)(const tensor *sz, const tensor *vecsz,
R *r0, R *r1, R *cr, R *ci,
rdft_kind kind)
{
problem_rdft2 *ego;
A(kind == R2HC || kind == R2HCII || kind == HC2R || kind == HC2RIII);
A(X(tensor_kosherp)(sz));
A(X(tensor_kosherp)(vecsz));
A(FINITE_RNK(sz->rnk));
/* require in-place problems to use r0 == cr */
if (UNTAINT(r0) == UNTAINT(ci))
return X(mkproblem_unsolvable)();
/* FIXME: should check UNTAINT(r1) == UNTAINT(cr) but
only if odd elements exist, which requires compressing the
tensors first */
if (UNTAINT(r0) == UNTAINT(cr))
r0 = cr = JOIN_TAINT(r0, cr);
ego = (problem_rdft2 *)X(mkproblem)(sizeof(problem_rdft2), &padt);
if (sz->rnk > 1) { /* have to compress rnk-1 dims separately, ugh */
tensor *szc = X(tensor_copy_except)(sz, sz->rnk - 1);
tensor *szr = X(tensor_copy_sub)(sz, sz->rnk - 1, 1);
tensor *szcc = X(tensor_compress)(szc);
if (szcc->rnk > 0)
ego->sz = X(tensor_append)(szcc, szr);
else
ego->sz = X(tensor_compress)(szr);
X(tensor_destroy2)(szc, szr); X(tensor_destroy)(szcc);
} else {
ego->sz = X(tensor_compress)(sz);
}
ego->vecsz = X(tensor_compress_contiguous)(vecsz);
ego->r0 = r0;
ego->r1 = r1;
ego->cr = cr;
ego->ci = ci;
ego->kind = kind;
A(FINITE_RNK(ego->sz->rnk));
return &(ego->super);
}
/* Same as X(mkproblem_rdft2), but also destroy input tensors. */
problem *X(mkproblem_rdft2_d)(tensor *sz, tensor *vecsz,
R *r0, R *r1, R *cr, R *ci, rdft_kind kind)
{
problem *p = X(mkproblem_rdft2)(sz, vecsz, r0, r1, cr, ci, kind);
X(tensor_destroy2)(vecsz, sz);
return p;
}
/* Same as X(mkproblem_rdft2_d), but with only one R pointer.
Used by the API. */
problem *X(mkproblem_rdft2_d_3pointers)(tensor *sz, tensor *vecsz,
R *r0, R *cr, R *ci, rdft_kind kind)
{
problem *p;
int rnk = sz->rnk;
R *r1;
if (rnk == 0)
r1 = r0;
else if (R2HC_KINDP(kind)) {
r1 = r0 + sz->dims[rnk-1].is;
sz->dims[rnk-1].is *= 2;
} else {
r1 = r0 + sz->dims[rnk-1].os;
sz->dims[rnk-1].os *= 2;
}
p = X(mkproblem_rdft2)(sz, vecsz, r0, r1, cr, ci, kind);
X(tensor_destroy2)(vecsz, sz);
return p;
}
|