1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
/*
* Copyright (c) 2003, 2007-14 Matteo Frigo
* Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
*
* Double-precision support added by Romain Dolbeau.
* Romain Dolbeau hereby places his modifications in the public domain.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#if !defined(FFTW_SINGLE) && !defined( __aarch64__)
#error "NEON only works in single precision on 32 bits ARM"
#endif
#if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
#error "NEON only works in single or double precision"
#endif
#ifdef FFTW_SINGLE
# define DS(d,s) s /* single-precision option */
# define SUFF(name) name ## _f32
#else
# define DS(d,s) d /* double-precision option */
# define SUFF(name) name ## _f64
#endif
/* define these unconditionally, because they are used by
taint.c which is compiled without neon */
#define SIMD_SUFFIX _neon /* for renaming */
#define VL DS(1,2) /* SIMD complex vector length */
#define SIMD_VSTRIDE_OKA(x) DS(SIMD_STRIDE_OKA(x),((x) == 2))
#define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK
#if defined(__GNUC__) && !defined(__ARM_NEON__) && !defined(__ARM_NEON)
#error "compiling simd-neon.h requires -mfpu=neon or equivalent"
#endif
#include <arm_neon.h>
/* FIXME: I am not sure whether this code assumes little-endian
ordering. VLIT may or may not be wrong for big-endian systems. */
typedef DS(float64x2_t, float32x4_t) V;
#ifdef FFTW_SINGLE
# define VLIT(x0, x1) {x0, x1, x0, x1}
#else
# define VLIT(x0, x1) {x0, x1}
#endif
#define LDK(x) x
#define DVK(var, val) const V var = VLIT(val, val)
/* NEON has FMA, but a three-operand FMA is not too useful
for FFT purposes. We normally compute
t0=a+b*c
t1=a-b*c
In a three-operand instruction set this translates into
t0=a
t0+=b*c
t1=a
t1-=b*c
At least one move must be implemented, negating the advantage of
the FMA in the first place. At least some versions of gcc generate
both moves. So we are better off generating t=b*c;t0=a+t;t1=a-t;*/
#if ARCH_PREFERS_FMA
#warning "--enable-fma on NEON is probably a bad idea (see source code)"
#endif
#define VADD(a, b) SUFF(vaddq)(a, b)
#define VSUB(a, b) SUFF(vsubq)(a, b)
#define VMUL(a, b) SUFF(vmulq)(a, b)
#define VFMA(a, b, c) SUFF(vmlaq)(c, a, b) /* a*b+c */
#define VFNMS(a, b, c) SUFF(vmlsq)(c, a, b) /* FNMS=-(a*b-c) in powerpc terminology; MLS=c-a*b
in ARM terminology */
#define VFMS(a, b, c) VSUB(VMUL(a, b), c) /* FMS=a*b-c in powerpc terminology; no equivalent
arm instruction (?) */
#define STOREH(a, v) SUFF(vst1)((a), SUFF(vget_high)(v))
#define STOREL(a, v) SUFF(vst1)((a), SUFF(vget_low)(v))
static inline V LDA(const R *x, INT ivs, const R *aligned_like)
{
(void) aligned_like; /* UNUSED */
return SUFF(vld1q)(x);
}
static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
{
(void) aligned_like; /* UNUSED */
SUFF(vst1q)(x, v);
}
#ifdef FFTW_SINGLE
static inline V LD(const R *x, INT ivs, const R *aligned_like)
{
(void) aligned_like; /* UNUSED */
return SUFF(vcombine)(SUFF(vld1)(x), SUFF(vld1)((x + ivs)));
}
static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
{
(void) aligned_like; /* UNUSED */
/* WARNING: the extra_iter hack depends upon store-low occurring
after store-high */
STOREH(x + ovs, v);
STOREL(x,v);
}
#else /* !FFTW_SINGLE */
# define LD LDA
# define ST STA
#endif
/* 2x2 complex transpose and store */
#define STM2 DS(STA,ST)
#define STN2(x, v0, v1, ovs) /* nop */
#ifdef FFTW_SINGLE
/* store and 4x4 real transpose */
static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
{
(void) aligned_like; /* UNUSED */
SUFF(vst1_lane)((x) , SUFF(vget_low)(v), 0);
SUFF(vst1_lane)((x + ovs), SUFF(vget_low)(v), 1);
SUFF(vst1_lane)((x + 2 * ovs), SUFF(vget_high)(v), 0);
SUFF(vst1_lane)((x + 3 * ovs), SUFF(vget_high)(v), 1);
}
#define STN4(x, v0, v1, v2, v3, ovs) /* use STM4 */
#else /* !FFTW_SINGLE */
static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
{
(void)aligned_like; /* UNUSED */
STOREL(x, v);
STOREH(x + ovs, v);
}
# define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
#endif
#ifdef FFTW_SINGLE
#define FLIP_RI(x) SUFF(vrev64q)(x)
#else
/* FIXME */
#define FLIP_RI(x) SUFF(vcombine)(SUFF(vget_high)(x), SUFF(vget_low)(x))
#endif
static inline V VCONJ(V x)
{
#ifdef FFTW_SINGLE
static const uint32x4_t pm = {0, 0x80000000u, 0, 0x80000000u};
return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(x), pm));
#else
static const uint64x2_t pm = {0, 0x8000000000000000ull};
/* Gcc-4.9.2 still does not include vreinterpretq_f64_u64, but simple
* casts generate the correct assembly.
*/
return (float64x2_t)(veorq_u64((uint64x2_t)(x), (uint64x2_t)(pm)));
#endif
}
static inline V VBYI(V x)
{
return FLIP_RI(VCONJ(x));
}
static inline V VFMAI(V b, V c)
{
const V mp = VLIT(-1.0, 1.0);
return VFMA(FLIP_RI(b), mp, c);
}
static inline V VFNMSI(V b, V c)
{
const V mp = VLIT(-1.0, 1.0);
return VFNMS(FLIP_RI(b), mp, c);
}
static inline V VFMACONJ(V b, V c)
{
const V pm = VLIT(1.0, -1.0);
return VFMA(b, pm, c);
}
static inline V VFNMSCONJ(V b, V c)
{
const V pm = VLIT(1.0, -1.0);
return VFNMS(b, pm, c);
}
static inline V VFMSCONJ(V b, V c)
{
return VSUB(VCONJ(b), c);
}
#ifdef FFTW_SINGLE
#if 1
#define VEXTRACT_REIM(tr, ti, tx) \
{ \
tr = SUFF(vcombine)(SUFF(vdup_lane)(SUFF(vget_low)(tx), 0), \
SUFF(vdup_lane)(SUFF(vget_high)(tx), 0)); \
ti = SUFF(vcombine)(SUFF(vdup_lane)(SUFF(vget_low)(tx), 1), \
SUFF(vdup_lane)(SUFF(vget_high)(tx), 1)); \
}
#else
/* this alternative might be faster in an ideal world, but gcc likes
to spill VVV onto the stack */
#define VEXTRACT_REIM(tr, ti, tx) \
{ \
float32x4x2_t vvv = SUFF(vtrnq)(tx, tx); \
tr = vvv.val[0]; \
ti = vvv.val[1]; \
}
#endif
#else
#define VEXTRACT_REIM(tr, ti, tx) \
{ \
tr = SUFF(vtrn1q)(tx, tx); \
ti = SUFF(vtrn2q)(tx, tx); \
}
#endif
static inline V VZMUL(V tx, V sr)
{
V tr, ti;
VEXTRACT_REIM(tr, ti, tx);
tr = VMUL(sr, tr);
sr = VBYI(sr);
return VFMA(ti, sr, tr);
}
static inline V VZMULJ(V tx, V sr)
{
V tr, ti;
VEXTRACT_REIM(tr, ti, tx);
tr = VMUL(sr, tr);
sr = VBYI(sr);
return VFNMS(ti, sr, tr);
}
static inline V VZMULI(V tx, V sr)
{
V tr, ti;
VEXTRACT_REIM(tr, ti, tx);
ti = VMUL(ti, sr);
sr = VBYI(sr);
return VFMS(tr, sr, ti);
}
static inline V VZMULIJ(V tx, V sr)
{
V tr, ti;
VEXTRACT_REIM(tr, ti, tx);
ti = VMUL(ti, sr);
sr = VBYI(sr);
return VFMA(tr, sr, ti);
}
/* twiddle storage #1: compact, slower */
#ifdef FFTW_SINGLE
#define VTW1(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
#else
#define VTW1(v,x) {TW_CEXP, v, x}
#endif
#define TWVL1 VL
static inline V BYTW1(const R *t, V sr)
{
V tx = LDA(t, 2, 0);
return VZMUL(tx, sr);
}
static inline V BYTWJ1(const R *t, V sr)
{
V tx = LDA(t, 2, 0);
return VZMULJ(tx, sr);
}
/* twiddle storage #2: twice the space, faster (when in cache) */
#ifdef FFTW_SINGLE
# define VTW2(v,x) \
{TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x}, \
{TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
#else
# define VTW2(v,x) \
{TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
#endif
#define TWVL2 (2 * VL)
static inline V BYTW2(const R *t, V sr)
{
V si = FLIP_RI(sr);
V tr = LDA(t, 2, 0), ti = LDA(t+2*VL, 2, 0);
return VFMA(ti, si, VMUL(tr, sr));
}
static inline V BYTWJ2(const R *t, V sr)
{
V si = FLIP_RI(sr);
V tr = LDA(t, 2, 0), ti = LDA(t+2*VL, 2, 0);
return VFNMS(ti, si, VMUL(tr, sr));
}
/* twiddle storage #3 */
#ifdef FFTW_SINGLE
# define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
#else
# define VTW3(v,x) {TW_CEXP, v, x}
#endif
# define TWVL3 (VL)
/* twiddle storage for split arrays */
#ifdef FFTW_SINGLE
# define VTWS(v,x) \
{TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
{TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
#else
# define VTWS(v,x) \
{TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
#endif
#define TWVLS (2 * VL)
#define VLEAVE() /* nothing */
#include "simd-common.h"
|