File: primes.c

package info (click to toggle)
fftw3 3.3.8-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 28,428 kB
  • sloc: ansic: 259,592; ml: 5,474; sh: 4,442; perl: 1,648; makefile: 1,156; fortran: 110
file content (212 lines) | stat: -rw-r--r-- 5,000 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */


#include "kernel/ifftw.h"

/***************************************************************************/

/* Rader's algorithm requires lots of modular arithmetic, and if we
   aren't careful we can have errors due to integer overflows. */

/* Compute (x * y) mod p, but watch out for integer overflows; we must
   have 0 <= {x, y} < p.

   If overflow is common, this routine is somewhat slower than
   e.g. using 'long long' arithmetic.  However, it has the advantage
   of working when INT is 64 bits, and is also faster when overflow is
   rare.  FFTW calls this via the MULMOD macro, which further
   optimizes for the case of small integers. 
*/

#define ADD_MOD(x, y, p) ((x) >= (p) - (y)) ? ((x) + ((y) - (p))) : ((x) + (y))

INT X(safe_mulmod)(INT x, INT y, INT p)
{
     INT r;

     if (y > x) 
	  return X(safe_mulmod)(y, x, p);

     A(0 <= y && x < p);

     r = 0;
     while (y) {
	  r = ADD_MOD(r, x*(y&1), p); y >>= 1;
	  x = ADD_MOD(x, x, p);
     }

     return r;
}

/***************************************************************************/

/* Compute n^m mod p, where m >= 0 and p > 0.  If we really cared, we
   could make this tail-recursive. */

INT X(power_mod)(INT n, INT m, INT p)
{
     A(p > 0);
     if (m == 0)
	  return 1;
     else if (m % 2 == 0) {
	  INT x = X(power_mod)(n, m / 2, p);
	  return MULMOD(x, x, p);
     }
     else
	  return MULMOD(n, X(power_mod)(n, m - 1, p), p);
}

/* the following two routines were contributed by Greg Dionne. */
static INT get_prime_factors(INT n, INT *primef)
{
     INT i;
     INT size = 0;

     A(n % 2 == 0); /* this routine is designed only for even n */
     primef[size++] = (INT)2;
     do {
	  n >>= 1;
     } while ((n & 1) == 0);

     if (n == 1)
	  return size;

     for (i = 3; i * i <= n; i += 2)
	  if (!(n % i)) {
	       primef[size++] = i;
	       do {
		    n /= i;
	       } while (!(n % i));
	  }
     if (n == 1)
	  return size;
     primef[size++] = n;
     return size;
}

INT X(find_generator)(INT p)
{
    INT n, i, size;
    INT primef[16];     /* smallest number = 32589158477190044730 > 2^64 */
    INT pm1 = p - 1;

    if (p == 2)
	 return 1;

    size = get_prime_factors(pm1, primef);
    n = 2;
    for (i = 0; i < size; i++)
        if (X(power_mod)(n, pm1 / primef[i], p) == 1) {
            i = -1;
            n++;
        }
    return n;
}

/* Return first prime divisor of n  (It would be at best slightly faster to
   search a static table of primes; there are 6542 primes < 2^16.)  */
INT X(first_divisor)(INT n)
{
     INT i;
     if (n <= 1)
	  return n;
     if (n % 2 == 0)
	  return 2;
     for (i = 3; i*i <= n; i += 2)
	  if (n % i == 0)
	       return i;
     return n;
}

int X(is_prime)(INT n)
{
     return(n > 1 && X(first_divisor)(n) == n);
}

INT X(next_prime)(INT n)
{
     while (!X(is_prime)(n)) ++n;
     return n;
}

int X(factors_into)(INT n, const INT *primes)
{
     for (; *primes != 0; ++primes) 
	  while ((n % *primes) == 0) 
	       n /= *primes;
     return (n == 1);
}

/* integer square root.  Return floor(sqrt(N)) */
INT X(isqrt)(INT n)
{
     INT guess, iguess;

     A(n >= 0);
     if (n == 0) return 0;

     guess = n; iguess = 1;

     do {
          guess = (guess + iguess) / 2;
	  iguess = n / guess;
     } while (guess > iguess);

     return guess;
}

static INT isqrt_maybe(INT n)
{
     INT guess = X(isqrt)(n);
     return guess * guess == n ? guess : 0;
}

#define divides(a, b) (((b) % (a)) == 0)
INT X(choose_radix)(INT r, INT n)
{
     if (r > 0) {
	  if (divides(r, n)) return r;
	  return 0;
     } else if (r == 0) {
	  return X(first_divisor)(n);
     } else {
	  /* r is negative.  If n = (-r) * q^2, take q as the radix */
	  r = 0 - r;
	  return (n > r && divides(r, n)) ? isqrt_maybe(n / r) : 0;
     }
}

/* return A mod N, works for all A including A < 0 */
INT X(modulo)(INT a, INT n)
{
     A(n > 0);
     if (a >= 0)
	  return a % n;
     else
	  return (n - 1) - ((-(a + (INT)1)) % n);
}

/* TRUE if N factors into small primes */
int X(factors_into_small_primes)(INT n)
{
     static const INT primes[] = { 2, 3, 5, 0 };
     return X(factors_into)(n, primes);
}