File: tensor7.c

package info (click to toggle)
fftw3 3.3.8-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 28,428 kB
  • sloc: ansic: 259,592; ml: 5,474; sh: 4,442; perl: 1,648; makefile: 1,156; fortran: 110
file content (215 lines) | stat: -rw-r--r-- 6,452 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */


#include "kernel/ifftw.h"

static int signof(INT x)
{
     if (x < 0) return -1;
     if (x == 0) return 0;
     /* if (x > 0) */ return 1;
}

/* total order among iodim's */
int X(dimcmp)(const iodim *a, const iodim *b)
{
     INT sai = X(iabs)(a->is), sbi = X(iabs)(b->is);
     INT sao = X(iabs)(a->os), sbo = X(iabs)(b->os);
     INT sam = X(imin)(sai, sao), sbm = X(imin)(sbi, sbo);

     /* in descending order of min{istride, ostride} */
     if (sam != sbm)
	  return signof(sbm - sam);

     /* in case of a tie, in descending order of istride */
     if (sbi != sai)
          return signof(sbi - sai);

     /* in case of a tie, in descending order of ostride */
     if (sbo != sao)
          return signof(sbo - sao);

     /* in case of a tie, in ascending order of n */
     return signof(a->n - b->n);
}

static void canonicalize(tensor *x)
{
     if (x->rnk > 1) {
	  qsort(x->dims, (unsigned)x->rnk, sizeof(iodim),
		(int (*)(const void *, const void *))X(dimcmp));
     }
}

static int compare_by_istride(const iodim *a, const iodim *b)
{
     INT sai = X(iabs)(a->is), sbi = X(iabs)(b->is);

     /* in descending order of istride */
     return signof(sbi - sai);
}

static tensor *really_compress(const tensor *sz)
{
     int i, rnk;
     tensor *x;

     A(FINITE_RNK(sz->rnk));
     for (i = rnk = 0; i < sz->rnk; ++i) {
          A(sz->dims[i].n > 0);
          if (sz->dims[i].n != 1)
               ++rnk;
     }

     x = X(mktensor)(rnk);
     for (i = rnk = 0; i < sz->rnk; ++i) {
          if (sz->dims[i].n != 1)
               x->dims[rnk++] = sz->dims[i];
     }
     return x;
}

/* Like tensor_copy, but eliminate n == 1 dimensions, which
   never affect any transform or transform vector.
 
   Also, we sort the tensor into a canonical order of decreasing
   strides (see X(dimcmp) for an exact definition).  In general,
   processing a loop/array in order of decreasing stride will improve
   locality.  Both forward and backwards traversal of the tensor are
   considered e.g. by vrank-geq1, so sorting in increasing
   vs. decreasing order is not really important. */
tensor *X(tensor_compress)(const tensor *sz)
{
     tensor *x = really_compress(sz);
     canonicalize(x);
     return x;
}

/* Return whether the strides of a and b are such that they form an
   effective contiguous 1d array.  Assumes that a.is >= b.is. */
static int strides_contig(iodim *a, iodim *b)
{
     return (a->is == b->is * b->n && a->os == b->os * b->n);
}

/* Like tensor_compress, but also compress into one dimension any
   group of dimensions that form a contiguous block of indices with
   some stride.  (This can safely be done for transform vector sizes.) */
tensor *X(tensor_compress_contiguous)(const tensor *sz)
{
     int i, rnk;
     tensor *sz2, *x;

     if (X(tensor_sz)(sz) == 0) 
	  return X(mktensor)(RNK_MINFTY);

     sz2 = really_compress(sz);
     A(FINITE_RNK(sz2->rnk));

     if (sz2->rnk <= 1) { /* nothing to compress. */ 
	  if (0) {
	       /* this call is redundant, because "sz->rnk <= 1" implies
		  that the tensor is already canonical, but I am writing
		  it explicitly because "logically" we need to canonicalize
		  the tensor before returning. */
	       canonicalize(sz2);
	  }
          return sz2;
     }

     /* sort in descending order of |istride|, so that compressible
	dimensions appear contigously */
     qsort(sz2->dims, (unsigned)sz2->rnk, sizeof(iodim),
		(int (*)(const void *, const void *))compare_by_istride);

     /* compute what the rank will be after compression */
     for (i = rnk = 1; i < sz2->rnk; ++i)
          if (!strides_contig(sz2->dims + i - 1, sz2->dims + i))
               ++rnk;

     /* merge adjacent dimensions whenever possible */
     x = X(mktensor)(rnk);
     x->dims[0] = sz2->dims[0];
     for (i = rnk = 1; i < sz2->rnk; ++i) {
          if (strides_contig(sz2->dims + i - 1, sz2->dims + i)) {
               x->dims[rnk - 1].n *= sz2->dims[i].n;
               x->dims[rnk - 1].is = sz2->dims[i].is;
               x->dims[rnk - 1].os = sz2->dims[i].os;
          } else {
               A(rnk < x->rnk);
               x->dims[rnk++] = sz2->dims[i];
          }
     }

     X(tensor_destroy)(sz2);

     /* reduce to canonical form */
     canonicalize(x);
     return x;
}

/* The inverse of X(tensor_append): splits the sz tensor into
   tensor a followed by tensor b, where a's rank is arnk. */
void X(tensor_split)(const tensor *sz, tensor **a, int arnk, tensor **b)
{
     A(FINITE_RNK(sz->rnk) && FINITE_RNK(arnk));

     *a = X(tensor_copy_sub)(sz, 0, arnk);
     *b = X(tensor_copy_sub)(sz, arnk, sz->rnk - arnk);
}

/* TRUE if the two tensors are equal */
int X(tensor_equal)(const tensor *a, const tensor *b)
{
     if (a->rnk != b->rnk)
	  return 0;

     if (FINITE_RNK(a->rnk)) {
	  int i;
	  for (i = 0; i < a->rnk; ++i) 
	       if (0
		   || a->dims[i].n != b->dims[i].n
		   || a->dims[i].is != b->dims[i].is
		   || a->dims[i].os != b->dims[i].os
		    )
		    return 0;
     }

     return 1;
}

/* TRUE if the sets of input and output locations described by
   (append sz vecsz) are the same */
int X(tensor_inplace_locations)(const tensor *sz, const tensor *vecsz)
{
     tensor *t = X(tensor_append)(sz, vecsz);
     tensor *ti = X(tensor_copy_inplace)(t, INPLACE_IS);
     tensor *to = X(tensor_copy_inplace)(t, INPLACE_OS);
     tensor *tic = X(tensor_compress_contiguous)(ti);
     tensor *toc = X(tensor_compress_contiguous)(to);

     int retval = X(tensor_equal)(tic, toc);

     X(tensor_destroy)(t);
     X(tensor_destroy4)(ti, to, tic, toc);

     return retval;
}