File: transpose-pairwise.c

package info (click to toggle)
fftw3 3.3.8-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,428 kB
  • sloc: ansic: 259,592; ml: 5,474; sh: 4,442; perl: 1,648; makefile: 1,156; fortran: 110
file content (487 lines) | stat: -rw-r--r-- 15,505 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

/* Distributed transposes using a sequence of carefully scheduled
   pairwise exchanges.  This has the advantage that it can be done
   in-place, or out-of-place while preserving the input, using buffer
   space proportional to the local size divided by the number of
   processes (i.e. to the total array size divided by the number of
   processes squared). */

#include "mpi-transpose.h"
#include <string.h>

typedef struct {
     solver super;
     int preserve_input; /* preserve input even if DESTROY_INPUT was passed */
} S;

typedef struct {
     plan_mpi_transpose super;

     plan *cld1, *cld2, *cld2rest, *cld3;
     INT rest_Ioff, rest_Ooff;
     
     int n_pes, my_pe, *sched;
     INT *send_block_sizes, *send_block_offsets;
     INT *recv_block_sizes, *recv_block_offsets;
     MPI_Comm comm;
     int preserve_input;
} P;

static void transpose_chunks(int *sched, int n_pes, int my_pe,
			     INT *sbs, INT *sbo, INT *rbs, INT *rbo,
			     MPI_Comm comm,
			     R *I, R *O)
{
     if (sched) {
	  int i;
	  MPI_Status status;

	  /* TODO: explore non-synchronous send/recv? */

	  if (I == O) {
	       R *buf = (R*) MALLOC(sizeof(R) * sbs[0], BUFFERS);
	       
	       for (i = 0; i < n_pes; ++i) {
		    int pe = sched[i];
		    if (my_pe == pe) {
			 if (rbo[pe] != sbo[pe])
			      memmove(O + rbo[pe], O + sbo[pe],
				      sbs[pe] * sizeof(R));
		    }
		    else {
			 memcpy(buf, O + sbo[pe], sbs[pe] * sizeof(R));
			 MPI_Sendrecv(buf, (int) (sbs[pe]), FFTW_MPI_TYPE,
				      pe, (my_pe * n_pes + pe) & 0xffff,
				      O + rbo[pe], (int) (rbs[pe]),
				      FFTW_MPI_TYPE,
				      pe, (pe * n_pes + my_pe) & 0xffff,
				      comm, &status);
		    }
	       }

	       X(ifree)(buf);
	  }
	  else { /* I != O */
	       for (i = 0; i < n_pes; ++i) {
		    int pe = sched[i];
		    if (my_pe == pe)
			 memcpy(O + rbo[pe], I + sbo[pe], sbs[pe] * sizeof(R));
		    else
			 MPI_Sendrecv(I + sbo[pe], (int) (sbs[pe]),
				      FFTW_MPI_TYPE,
				      pe, (my_pe * n_pes + pe) & 0xffff,
				      O + rbo[pe], (int) (rbs[pe]),
				      FFTW_MPI_TYPE,
				      pe, (pe * n_pes + my_pe) & 0xffff,
				      comm, &status);
	       }
	  }
     }
}

static void apply(const plan *ego_, R *I, R *O)
{
     const P *ego = (const P *) ego_;
     plan_rdft *cld1, *cld2, *cld2rest, *cld3;

     /* transpose locally to get contiguous chunks */
     cld1 = (plan_rdft *) ego->cld1;
     if (cld1) {
	  cld1->apply(ego->cld1, I, O);
	  
	  if (ego->preserve_input) I = O;

	  /* transpose chunks globally */
	  transpose_chunks(ego->sched, ego->n_pes, ego->my_pe,
			   ego->send_block_sizes, ego->send_block_offsets,
			   ego->recv_block_sizes, ego->recv_block_offsets,
			   ego->comm, O, I);
     }
     else if (ego->preserve_input) {
	  /* transpose chunks globally */
	  transpose_chunks(ego->sched, ego->n_pes, ego->my_pe,
			   ego->send_block_sizes, ego->send_block_offsets,
			   ego->recv_block_sizes, ego->recv_block_offsets,
			   ego->comm, I, O);

	  I = O;
     }
     else {
	  /* transpose chunks globally */
	  transpose_chunks(ego->sched, ego->n_pes, ego->my_pe,
			   ego->send_block_sizes, ego->send_block_offsets,
			   ego->recv_block_sizes, ego->recv_block_offsets,
			   ego->comm, I, I);
     }

     /* transpose locally, again, to get ordinary row-major;
	this may take two transposes if the block sizes are unequal
	(3 subplans, two of which operate on disjoint data) */
     cld2 = (plan_rdft *) ego->cld2;
     cld2->apply(ego->cld2, I, O);
     cld2rest = (plan_rdft *) ego->cld2rest;
     if (cld2rest) {
	  cld2rest->apply(ego->cld2rest,
			  I + ego->rest_Ioff, O + ego->rest_Ooff);
	  cld3 = (plan_rdft *) ego->cld3;
	  if (cld3)
	       cld3->apply(ego->cld3, O, O);
	  /* else TRANSPOSED_OUT is true and user wants O transposed */
     }
}

static int applicable(const S *ego, const problem *p_,
		      const planner *plnr)
{
     const problem_mpi_transpose *p = (const problem_mpi_transpose *) p_;
     /* Note: this is *not* UGLY for out-of-place, destroy-input plans;
	the planner often prefers transpose-pairwise to transpose-alltoall,
	at least with LAM MPI on my machine. */
     return (1
	     && (!ego->preserve_input || (!NO_DESTROY_INPUTP(plnr)
					  && p->I != p->O))
	     && ONLY_TRANSPOSEDP(p->flags));
}

static void awake(plan *ego_, enum wakefulness wakefulness)
{
     P *ego = (P *) ego_;
     X(plan_awake)(ego->cld1, wakefulness);
     X(plan_awake)(ego->cld2, wakefulness);
     X(plan_awake)(ego->cld2rest, wakefulness);
     X(plan_awake)(ego->cld3, wakefulness);
}

static void destroy(plan *ego_)
{
     P *ego = (P *) ego_;
     X(ifree0)(ego->sched);
     X(ifree0)(ego->send_block_sizes);
     MPI_Comm_free(&ego->comm);
     X(plan_destroy_internal)(ego->cld3);
     X(plan_destroy_internal)(ego->cld2rest);
     X(plan_destroy_internal)(ego->cld2);
     X(plan_destroy_internal)(ego->cld1);
}

static void print(const plan *ego_, printer *p)
{
     const P *ego = (const P *) ego_;
     p->print(p, "(mpi-transpose-pairwise%s%(%p%)%(%p%)%(%p%)%(%p%))", 
	      ego->preserve_input==2 ?"/p":"",
	      ego->cld1, ego->cld2, ego->cld2rest, ego->cld3);
}

/* Given a process which_pe and a number of processes npes, fills
   the array sched[npes] with a sequence of processes to communicate
   with for a deadlock-free, optimum-overlap all-to-all communication.
   (All processes must call this routine to get their own schedules.)
   The schedule can be re-ordered arbitrarily as long as all processes
   apply the same permutation to their schedules.

   The algorithm here is based upon the one described in:
       J. A. M. Schreuder, "Constructing timetables for sport
       competitions," Mathematical Programming Study 13, pp. 58-67 (1980). 
   In a sport competition, you have N teams and want every team to
   play every other team in as short a time as possible (maximum overlap
   between games).  This timetabling problem is therefore identical
   to that of an all-to-all communications problem.  In our case, there
   is one wrinkle: as part of the schedule, the process must do
   some data transfer with itself (local data movement), analogous
   to a requirement that each team "play itself" in addition to other
   teams.  With this wrinkle, it turns out that an optimal timetable
   (N parallel games) can be constructed for any N, not just for even
   N as in the original problem described by Schreuder.
*/
static void fill1_comm_sched(int *sched, int which_pe, int npes)
{
     int pe, i, n, s = 0;
     A(which_pe >= 0 && which_pe < npes);
     if (npes % 2 == 0) {
	  n = npes;
	  sched[s++] = which_pe;
     }
     else
	  n = npes + 1;
     for (pe = 0; pe < n - 1; ++pe) {
	  if (npes % 2 == 0) {
	       if (pe == which_pe) sched[s++] = npes - 1;
	       else if (npes - 1 == which_pe) sched[s++] = pe;
	  }
	  else if (pe == which_pe) sched[s++] = pe;

	  if (pe != which_pe && which_pe < n - 1) {
	       i = (pe - which_pe + (n - 1)) % (n - 1);
	       if (i < n/2)
		    sched[s++] = (pe + i) % (n - 1);
	       
	       i = (which_pe - pe + (n - 1)) % (n - 1);
	       if (i < n/2)
		    sched[s++] = (pe - i + (n - 1)) % (n - 1);
	  }
     }
     A(s == npes);
}

/* Sort the communication schedule sched for npes so that the schedule
   on process sortpe is ascending or descending (!ascending).  This is
   necessary to allow in-place transposes when the problem does not
   divide equally among the processes.  In this case there is one
   process where the incoming blocks are bigger/smaller than the
   outgoing blocks and thus have to be received in
   descending/ascending order, respectively, to avoid overwriting data
   before it is sent. */
static void sort1_comm_sched(int *sched, int npes, int sortpe, int ascending)
{
     int *sortsched, i;
     sortsched = (int *) MALLOC(npes * sizeof(int) * 2, OTHER);
     fill1_comm_sched(sortsched, sortpe, npes);
     if (ascending)
	  for (i = 0; i < npes; ++i)
	       sortsched[npes + sortsched[i]] = sched[i];
     else
	  for (i = 0; i < npes; ++i)
	       sortsched[2*npes - 1 - sortsched[i]] = sched[i];
     for (i = 0; i < npes; ++i)
	  sched[i] = sortsched[npes + i];
     X(ifree)(sortsched);
}

/* make the plans to do the post-MPI transpositions (shared with
   transpose-alltoall) */
int XM(mkplans_posttranspose)(const problem_mpi_transpose *p, planner *plnr,
			      R *I, R *O, int my_pe,
			      plan **cld2, plan **cld2rest, plan **cld3,
			      INT *rest_Ioff, INT *rest_Ooff)
{
     INT vn = p->vn;
     INT b = p->block;
     INT bt = XM(block)(p->ny, p->tblock, my_pe);
     INT nxb = p->nx / b; /* number of equal-sized blocks */
     INT nxr = p->nx - nxb * b; /* leftover rows after equal blocks */

     *cld2 = *cld2rest = *cld3 = NULL;
     *rest_Ioff = *rest_Ooff = 0;

     if (!(p->flags & TRANSPOSED_OUT) && (nxr == 0 || I != O)) {
	  INT nx = p->nx * vn;
	  b *= vn;
	  *cld2 = X(mkplan_f_d)(plnr, 
				X(mkproblem_rdft_0_d)(X(mktensor_3d)
						      (nxb, bt * b, b,
						       bt, b, nx,
						       b, 1, 1),
						      I, O),
				0, 0, NO_SLOW);
	  if (!*cld2) goto nada;

	  if (nxr > 0) {
	       *rest_Ioff = nxb * bt * b;
	       *rest_Ooff = nxb * b;
	       b = nxr * vn;
	       *cld2rest = X(mkplan_f_d)(plnr,
					 X(mkproblem_rdft_0_d)(X(mktensor_2d)
							       (bt, b, nx,
								b, 1, 1),
							       I + *rest_Ioff,
							       O + *rest_Ooff),
                                        0, 0, NO_SLOW);
               if (!*cld2rest) goto nada;
	  }
     }
     else {
	  *cld2 = X(mkplan_f_d)(plnr,
				X(mkproblem_rdft_0_d)(
				     X(mktensor_4d)
				     (nxb, bt * b * vn, bt * b * vn,
				      bt, b * vn, vn,
				      b, vn, bt * vn,
				      vn, 1, 1),
				     I, O),
				0, 0, NO_SLOW);
	  if (!*cld2) goto nada;

	  *rest_Ioff = *rest_Ooff = nxb * bt * b * vn;
	  *cld2rest = X(mkplan_f_d)(plnr,
				    X(mkproblem_rdft_0_d)(
					 X(mktensor_3d)
					 (bt, nxr * vn, vn,
					  nxr, vn, bt * vn,
					  vn, 1, 1),
					 I + *rest_Ioff, O + *rest_Ooff),
				    0, 0, NO_SLOW);
	  if (!*cld2rest) goto nada;

	  if (!(p->flags & TRANSPOSED_OUT)) {
	       *cld3 = X(mkplan_f_d)(plnr,
				     X(mkproblem_rdft_0_d)(
					  X(mktensor_3d)
					  (p->nx, bt * vn, vn,
					   bt, vn, p->nx * vn,
					   vn, 1, 1),
					  O, O),
				     0, 0, NO_SLOW);
	       if (!*cld3) goto nada;
	  }
     }

     return 1;

nada:
     X(plan_destroy_internal)(*cld3);
     X(plan_destroy_internal)(*cld2rest);
     X(plan_destroy_internal)(*cld2);
     *cld2 = *cld2rest = *cld3 = NULL;
     return 0;
}

static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
     const S *ego = (const S *) ego_;
     const problem_mpi_transpose *p;
     P *pln;
     plan *cld1 = 0, *cld2 = 0, *cld2rest = 0, *cld3 = 0;
     INT b, bt, vn, rest_Ioff, rest_Ooff;
     INT *sbs, *sbo, *rbs, *rbo;
     int pe, my_pe, n_pes, sort_pe = -1, ascending = 1;
     R *I, *O;
     static const plan_adt padt = {
          XM(transpose_solve), awake, print, destroy
     };

     UNUSED(ego);

     if (!applicable(ego, p_, plnr))
          return (plan *) 0;

     p = (const problem_mpi_transpose *) p_;
     vn = p->vn;
     I = p->I; O = p->O;

     MPI_Comm_rank(p->comm, &my_pe);
     MPI_Comm_size(p->comm, &n_pes);

     b = XM(block)(p->nx, p->block, my_pe);
     
     if (!(p->flags & TRANSPOSED_IN)) { /* b x ny x vn -> ny x b x vn */
	  cld1 = X(mkplan_f_d)(plnr, 
			       X(mkproblem_rdft_0_d)(X(mktensor_3d)
						     (b, p->ny * vn, vn,
						      p->ny, vn, b * vn,
						      vn, 1, 1),
						     I, O),
			       0, 0, NO_SLOW);
	  if (XM(any_true)(!cld1, p->comm)) goto nada;
     }
     if (ego->preserve_input || NO_DESTROY_INPUTP(plnr)) I = O;

     if (XM(any_true)(!XM(mkplans_posttranspose)(p, plnr, I, O, my_pe,
						 &cld2, &cld2rest, &cld3,
						 &rest_Ioff, &rest_Ooff),
		      p->comm)) goto nada;

     pln = MKPLAN_MPI_TRANSPOSE(P, &padt, apply);

     pln->cld1 = cld1;
     pln->cld2 = cld2;
     pln->cld2rest = cld2rest;
     pln->rest_Ioff = rest_Ioff;
     pln->rest_Ooff = rest_Ooff;
     pln->cld3 = cld3;
     pln->preserve_input = ego->preserve_input ? 2 : NO_DESTROY_INPUTP(plnr);

     MPI_Comm_dup(p->comm, &pln->comm);

     n_pes = (int) X(imax)(XM(num_blocks)(p->nx, p->block),
			   XM(num_blocks)(p->ny, p->tblock));

     /* Compute sizes/offsets of blocks to exchange between processors */
     sbs = (INT *) MALLOC(4 * n_pes * sizeof(INT), PLANS);
     sbo = sbs + n_pes;
     rbs = sbo + n_pes;
     rbo = rbs + n_pes;
     b = XM(block)(p->nx, p->block, my_pe);
     bt = XM(block)(p->ny, p->tblock, my_pe);
     for (pe = 0; pe < n_pes; ++pe) {
	  INT db, dbt; /* destination block sizes */
	  db = XM(block)(p->nx, p->block, pe);
	  dbt = XM(block)(p->ny, p->tblock, pe);

	  sbs[pe] = b * dbt * vn;
	  sbo[pe] = pe * (b * p->tblock) * vn;
	  rbs[pe] = db * bt * vn;
	  rbo[pe] = pe * (p->block * bt) * vn;

	  if (db * dbt > 0 && db * p->tblock != p->block * dbt) {
	       A(sort_pe == -1); /* only one process should need sorting */
	       sort_pe = pe;
	       ascending = db * p->tblock > p->block * dbt;
	  }
     }
     pln->n_pes = n_pes;
     pln->my_pe = my_pe;
     pln->send_block_sizes = sbs;
     pln->send_block_offsets = sbo;
     pln->recv_block_sizes = rbs;
     pln->recv_block_offsets = rbo;

     if (my_pe >= n_pes) {
	  pln->sched = 0; /* this process is not doing anything */
     }
     else {
	  pln->sched = (int *) MALLOC(n_pes * sizeof(int), PLANS);
	  fill1_comm_sched(pln->sched, my_pe, n_pes);
	  if (sort_pe >= 0)
	       sort1_comm_sched(pln->sched, n_pes, sort_pe, ascending);
     }

     X(ops_zero)(&pln->super.super.ops);
     if (cld1) X(ops_add2)(&cld1->ops, &pln->super.super.ops);
     if (cld2) X(ops_add2)(&cld2->ops, &pln->super.super.ops);
     if (cld2rest) X(ops_add2)(&cld2rest->ops, &pln->super.super.ops);
     if (cld3) X(ops_add2)(&cld3->ops, &pln->super.super.ops);
     /* FIXME: should MPI operations be counted in "other" somehow? */

     return &(pln->super.super);

 nada:
     X(plan_destroy_internal)(cld3);
     X(plan_destroy_internal)(cld2rest);
     X(plan_destroy_internal)(cld2);
     X(plan_destroy_internal)(cld1);
     return (plan *) 0;
}

static solver *mksolver(int preserve_input)
{
     static const solver_adt sadt = { PROBLEM_MPI_TRANSPOSE, mkplan, 0 };
     S *slv = MKSOLVER(S, &sadt);
     slv->preserve_input = preserve_input;
     return &(slv->super);
}

void XM(transpose_pairwise_register)(planner *p)
{
     int preserve_input;
     for (preserve_input = 0; preserve_input <= 1; ++preserve_input)
	  REGISTER_SOLVER(p, mksolver(preserve_input));
}