File: buffered2.c

package info (click to toggle)
fftw3 3.3.8-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 28,428 kB
  • sloc: ansic: 259,592; ml: 5,474; sh: 4,442; perl: 1,648; makefile: 1,156; fortran: 110
file content (375 lines) | stat: -rw-r--r-- 10,841 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */


/* buffering of rdft2.  We always buffer the complex array */

#include "rdft/rdft.h"
#include "dft/dft.h"

typedef struct {
     solver super;
     size_t maxnbuf_ndx;
} S;

static const INT maxnbufs[] = { 8, 256 };

typedef struct {
     plan_rdft2 super;

     plan *cld, *cldcpy, *cldrest;
     INT n, vl, nbuf, bufdist;
     INT ivs_by_nbuf, ovs_by_nbuf;
     INT ioffset, roffset;
} P;

/* transform a vector input with the help of bufs */
static void apply_r2hc(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
{
     const P *ego = (const P *) ego_;
     plan_rdft2 *cld = (plan_rdft2 *) ego->cld;
     plan_dft *cldcpy = (plan_dft *) ego->cldcpy;
     INT i, vl = ego->vl, nbuf = ego->nbuf;
     INT ivs_by_nbuf = ego->ivs_by_nbuf, ovs_by_nbuf = ego->ovs_by_nbuf;
     R *bufs = (R *)MALLOC(sizeof(R) * nbuf * ego->bufdist, BUFFERS);
     R *bufr = bufs + ego->roffset;
     R *bufi = bufs + ego->ioffset;
     plan_rdft2 *cldrest;

     for (i = nbuf; i <= vl; i += nbuf) {
          /* transform to bufs: */
          cld->apply((plan *) cld, r0, r1, bufr, bufi);
	  r0 += ivs_by_nbuf; r1 += ivs_by_nbuf;

          /* copy back */
          cldcpy->apply((plan *) cldcpy, bufr, bufi, cr, ci);
	  cr += ovs_by_nbuf; ci += ovs_by_nbuf;
     }

     X(ifree)(bufs);

     /* Do the remaining transforms, if any: */
     cldrest = (plan_rdft2 *) ego->cldrest;
     cldrest->apply((plan *) cldrest, r0, r1, cr, ci);
}

/* for hc2r problems, copy the input into buffer, and then
   transform buffer->output, which allows for destruction of the
   buffer */
static void apply_hc2r(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
{
     const P *ego = (const P *) ego_;
     plan_rdft2 *cld = (plan_rdft2 *) ego->cld;
     plan_dft *cldcpy = (plan_dft *) ego->cldcpy;
     INT i, vl = ego->vl, nbuf = ego->nbuf;
     INT ivs_by_nbuf = ego->ivs_by_nbuf, ovs_by_nbuf = ego->ovs_by_nbuf;
     R *bufs = (R *)MALLOC(sizeof(R) * nbuf * ego->bufdist, BUFFERS);
     R *bufr = bufs + ego->roffset;
     R *bufi = bufs + ego->ioffset;
     plan_rdft2 *cldrest;

     for (i = nbuf; i <= vl; i += nbuf) {
          /* copy input into bufs: */
          cldcpy->apply((plan *) cldcpy, cr, ci, bufr, bufi);
	  cr += ivs_by_nbuf; ci += ivs_by_nbuf;

          /* transform to output */
          cld->apply((plan *) cld, r0, r1, bufr, bufi);
	  r0 += ovs_by_nbuf; r1 += ovs_by_nbuf;
     }

     X(ifree)(bufs);

     /* Do the remaining transforms, if any: */
     cldrest = (plan_rdft2 *) ego->cldrest;
     cldrest->apply((plan *) cldrest, r0, r1, cr, ci);
}


static void awake(plan *ego_, enum wakefulness wakefulness)
{
     P *ego = (P *) ego_;

     X(plan_awake)(ego->cld, wakefulness);
     X(plan_awake)(ego->cldcpy, wakefulness);
     X(plan_awake)(ego->cldrest, wakefulness);
}

static void destroy(plan *ego_)
{
     P *ego = (P *) ego_;
     X(plan_destroy_internal)(ego->cldrest);
     X(plan_destroy_internal)(ego->cldcpy);
     X(plan_destroy_internal)(ego->cld);
}

static void print(const plan *ego_, printer *p)
{
     const P *ego = (const P *) ego_;
     p->print(p, "(rdft2-buffered-%D%v/%D-%D%(%p%)%(%p%)%(%p%))",
              ego->n, ego->nbuf,
              ego->vl, ego->bufdist % ego->n,
              ego->cld, ego->cldcpy, ego->cldrest);
}

static int applicable0(const S *ego, const problem *p_, const planner *plnr)
{
     const problem_rdft2 *p = (const problem_rdft2 *) p_;
     iodim *d = p->sz->dims;

     if (1
	 && p->vecsz->rnk <= 1
	 && p->sz->rnk == 1

	 /* we assume even n throughout */
	 && (d[0].n % 2) == 0

	 /* and we only consider these two cases */
	 && (p->kind == R2HC || p->kind == HC2R)

	  ) {
	  INT vl, ivs, ovs;
	  X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);

	  if (X(toobig)(d[0].n) && CONSERVE_MEMORYP(plnr))
	       return 0;

	  /* if this solver is redundant, in the sense that a solver
	     of lower index generates the same plan, then prune this
	     solver */
	  if (X(nbuf_redundant)(d[0].n, vl,
				ego->maxnbuf_ndx,
				maxnbufs, NELEM(maxnbufs)))
	       return 0;

	  if (p->r0 != p->cr) {
	       if (p->kind == HC2R) {
		    /* Allow HC2R problems only if the input is to be
		       preserved.  This solver sets NO_DESTROY_INPUT,
		       which prevents infinite loops */
		    return (NO_DESTROY_INPUTP(plnr));
	       } else {
		    /*
		      In principle, the buffered transforms might be useful
		      when working out of place.  However, in order to
		      prevent infinite loops in the planner, we require
		      that the output stride of the buffered transforms be
		      greater than 2.
		    */
		    return (d[0].os > 2);
	       }
	  }

	  /*
	   * If the problem is in place, the input/output strides must
	   * be the same or the whole thing must fit in the buffer.
	   */
	  if (X(rdft2_inplace_strides(p, RNK_MINFTY)))
	       return 1;

	  if (/* fits into buffer: */
	       ((p->vecsz->rnk == 0)
		||
		(X(nbuf)(d[0].n, p->vecsz->dims[0].n,
			 maxnbufs[ego->maxnbuf_ndx])
		 == p->vecsz->dims[0].n)))
	       return 1;
     }

     return 0;
}

static int applicable(const S *ego, const problem *p_, const planner *plnr)
{
     const problem_rdft2 *p;

     if (NO_BUFFERINGP(plnr)) return 0;

     if (!applicable0(ego, p_, plnr)) return 0;

     p = (const problem_rdft2 *) p_;
     if (p->kind == HC2R) {
	  if (NO_UGLYP(plnr)) {
	       /* UGLY if in-place and too big, since the problem
		  could be solved via transpositions */
	       if (p->r0 == p->cr && X(toobig)(p->sz->dims[0].n)) 
		    return 0;
	  }
     } else {
	  if (NO_UGLYP(plnr)) {
	       if (p->r0 != p->cr || X(toobig)(p->sz->dims[0].n))
		    return 0;
	  }
     }
     return 1;
}

static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
{
     P *pln;
     const S *ego = (const S *)ego_;
     plan *cld = (plan *) 0;
     plan *cldcpy = (plan *) 0;
     plan *cldrest = (plan *) 0;
     const problem_rdft2 *p = (const problem_rdft2 *) p_;
     R *bufs = (R *) 0;
     INT nbuf = 0, bufdist, n, vl;
     INT ivs, ovs, ioffset, roffset, id, od;

     static const plan_adt padt = {
	  X(rdft2_solve), awake, print, destroy
     };

     if (!applicable(ego, p_, plnr))
          goto nada;

     n = X(tensor_sz)(p->sz);
     X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs);

     nbuf = X(nbuf)(n, vl, maxnbufs[ego->maxnbuf_ndx]);
     bufdist = X(bufdist)(n + 2, vl); /* complex-side rdft2 stores N+2
					 real numbers */
     A(nbuf > 0);

     /* attempt to keep real and imaginary part in the same order,
	so as to allow optimizations in the the copy plan */
     roffset = (p->cr - p->ci > 0) ? (INT)1 : (INT)0;
     ioffset = 1 - roffset;

     /* initial allocation for the purpose of planning */
     bufs = (R *) MALLOC(sizeof(R) * nbuf * bufdist, BUFFERS);

     id = ivs * (nbuf * (vl / nbuf));
     od = ovs * (nbuf * (vl / nbuf));

     if (p->kind == R2HC) {
	  /* allow destruction of input if problem is in place */
	  cld = X(mkplan_f_d)(
	       plnr, 
	       X(mkproblem_rdft2_d)(
		    X(mktensor_1d)(n, p->sz->dims[0].is, 2),
		    X(mktensor_1d)(nbuf, ivs, bufdist),
		    TAINT(p->r0, ivs * nbuf), TAINT(p->r1, ivs * nbuf),
		    bufs + roffset, bufs + ioffset, p->kind),
	       0, 0, (p->r0 == p->cr) ? NO_DESTROY_INPUT : 0);
	  if (!cld) goto nada;

	  /* copying back from the buffer is a rank-0 DFT: */
	  cldcpy = X(mkplan_d)(
	       plnr, 
	       X(mkproblem_dft_d)(
		    X(mktensor_0d)(),
		    X(mktensor_2d)(nbuf, bufdist, ovs,
				   n/2+1, 2, p->sz->dims[0].os),
		    bufs + roffset, bufs + ioffset,
		    TAINT(p->cr, ovs * nbuf), TAINT(p->ci, ovs * nbuf) ));
	  if (!cldcpy) goto nada;

	  X(ifree)(bufs); bufs = 0;

	  cldrest = X(mkplan_d)(plnr, 
				X(mkproblem_rdft2_d)(
				     X(tensor_copy)(p->sz),
				     X(mktensor_1d)(vl % nbuf, ivs, ovs),
				     p->r0 + id, p->r1 + id, 
				     p->cr + od, p->ci + od,
				     p->kind));
	  if (!cldrest) goto nada;
	  pln = MKPLAN_RDFT2(P, &padt, apply_r2hc);
     } else {
	  /* allow destruction of buffer */
	  cld = X(mkplan_f_d)(
	       plnr, 
	       X(mkproblem_rdft2_d)(
		    X(mktensor_1d)(n, 2, p->sz->dims[0].os),
		    X(mktensor_1d)(nbuf, bufdist, ovs),
		    TAINT(p->r0, ovs * nbuf), TAINT(p->r1, ovs * nbuf),
		    bufs + roffset, bufs + ioffset, p->kind),
	       0, 0, NO_DESTROY_INPUT);
	  if (!cld) goto nada;

	  /* copying input into buffer is a rank-0 DFT: */
	  cldcpy = X(mkplan_d)(
	       plnr, 
	       X(mkproblem_dft_d)(
		    X(mktensor_0d)(),
		    X(mktensor_2d)(nbuf, ivs, bufdist,
				   n/2+1, p->sz->dims[0].is, 2),
		    TAINT(p->cr, ivs * nbuf), TAINT(p->ci, ivs * nbuf), 
		    bufs + roffset, bufs + ioffset));
	  if (!cldcpy) goto nada;

	  X(ifree)(bufs); bufs = 0;

	  cldrest = X(mkplan_d)(plnr, 
				X(mkproblem_rdft2_d)(
				     X(tensor_copy)(p->sz),
				     X(mktensor_1d)(vl % nbuf, ivs, ovs),
				     p->r0 + od, p->r1 + od, 
				     p->cr + id, p->ci + id,
				     p->kind));
	  if (!cldrest) goto nada;

	  pln = MKPLAN_RDFT2(P, &padt, apply_hc2r);
     }

     pln->cld = cld;
     pln->cldcpy = cldcpy;
     pln->cldrest = cldrest;
     pln->n = n;
     pln->vl = vl;
     pln->ivs_by_nbuf = ivs * nbuf;
     pln->ovs_by_nbuf = ovs * nbuf;
     pln->roffset = roffset;
     pln->ioffset = ioffset;

     pln->nbuf = nbuf;
     pln->bufdist = bufdist;

     {
	  opcnt t;
	  X(ops_add)(&cld->ops, &cldcpy->ops, &t);
	  X(ops_madd)(vl / nbuf, &t, &cldrest->ops, &pln->super.super.ops);
     }

     return &(pln->super.super);

 nada:
     X(ifree0)(bufs);
     X(plan_destroy_internal)(cldrest);
     X(plan_destroy_internal)(cldcpy);
     X(plan_destroy_internal)(cld);
     return (plan *) 0;
}

static solver *mksolver(size_t maxnbuf_ndx)
{
     static const solver_adt sadt = { PROBLEM_RDFT2, mkplan, 0 };
     S *slv = MKSOLVER(S, &sadt);
     slv->maxnbuf_ndx = maxnbuf_ndx;
     return &(slv->super);
}

void X(rdft2_buffered_register)(planner *p)
{
     size_t i;
     for (i = 0; i < NELEM(maxnbufs); ++i)
	  REGISTER_SOLVER(p, mksolver(i));
}