File: simd-generic128.h

package info (click to toggle)
fftw3 3.3.8-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster
  • size: 28,428 kB
  • sloc: ansic: 259,592; ml: 5,474; sh: 4,442; perl: 1,648; makefile: 1,156; fortran: 110
file content (288 lines) | stat: -rw-r--r-- 7,440 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
/*
 * Copyright (c) 2003, 2007-14 Matteo Frigo
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
 *
 * Generic128d added by Romain Dolbeau, and turned into simd-generic128.h
 * with single & double precision by Erik Lindahl.
 * Romain Dolbeau hereby places his modifications in the public domain.
 * Erik Lindahl hereby places his modifications in the public domain.
 * 
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */


#if defined(FFTW_LDOUBLE) || defined(FFTW_QUAD)
#  error "Generic simd128 only works in single or double precision"
#endif

#define SIMD_SUFFIX  _generic_simd128  /* for renaming */

#ifdef FFTW_SINGLE
#  define DS(d,s) s /* single-precision option */
#  define VDUPL(x) (V){x[0],x[0],x[2],x[2]}
#  define VDUPH(x) (V){x[1],x[1],x[3],x[3]}
#  define DVK(var, val) V var = {val,val,val,val}
#else
#  define DS(d,s) d /* double-precision option */
#  define VDUPL(x) (V){x[0],x[0]}
#  define VDUPH(x) (V){x[1],x[1]}
#  define DVK(var, val) V var = {val, val}
#endif

#define VL DS(1,2)         /* SIMD vector length, in term of complex numbers */
#define SIMD_VSTRIDE_OKA(x) DS(1,((x) == 2))
#define SIMD_STRIDE_OKPAIR SIMD_STRIDE_OK

typedef DS(double,float) V __attribute__ ((vector_size(16)));

#define VADD(a,b) ((a)+(b))
#define VSUB(a,b) ((a)-(b))
#define VMUL(a,b) ((a)*(b))


#define LDK(x) x

static inline V LDA(const R *x, INT ivs, const R *aligned_like)
{
     (void)aligned_like; /* UNUSED */
     (void)ivs; /* UNUSED */
     return *(const V *)x;
}

static inline void STA(R *x, V v, INT ovs, const R *aligned_like)
{
     (void)aligned_like; /* UNUSED */
     (void)ovs; /* UNUSED */
     *(V *)x = v;
}

static inline V LD(const R *x, INT ivs, const R *aligned_like)
{
    (void)aligned_like; /* UNUSED */
    V res;
    res[0] = x[0];
    res[1] = x[1];
#ifdef FFTW_SINGLE
    res[2] = x[ivs];
    res[3] = x[ivs+1];
#endif
    return res;
}

#ifdef FFTW_SINGLE
/* ST has to be separate due to the storage hack requiring reverse order */
static inline void ST(R *x, V v, INT ovs, const R *aligned_like)
{
    (void)aligned_like; /* UNUSED */
    (void)ovs; /* UNUSED */
    *(x + ovs    ) = v[2];
    *(x + ovs + 1) = v[3];
    *(x    ) = v[0];
    *(x + 1) = v[1];
}
#else
/* FFTW_DOUBLE */
#  define ST STA
#endif

#ifdef FFTW_SINGLE
#define STM2 ST
#define STN2(x, v0, v1, ovs) /* nop */

static inline void STN4(R *x, V v0, V v1, V v2, V v3, INT ovs)
{
    *(x              ) = v0[0];
    *(x           + 1) = v1[0];
    *(x           + 2) = v2[0];
    *(x           + 3) = v3[0];
    *(x     + ovs    ) = v0[1];
    *(x     + ovs + 1) = v1[1];
    *(x     + ovs + 2) = v2[1];
    *(x     + ovs + 3) = v3[1];
    *(x + 2 * ovs    ) = v0[2];
    *(x + 2 * ovs + 1) = v1[2];
    *(x + 2 * ovs + 2) = v2[2];
    *(x + 2 * ovs + 3) = v3[2];
    *(x + 3 * ovs    ) = v0[3];
    *(x + 3 * ovs + 1) = v1[3];
    *(x + 3 * ovs + 2) = v2[3];
    *(x + 3 * ovs + 3) = v3[3];
}
#define STM4(x, v, ovs, aligned_like) /* no-op */


#else
/* FFTW_DOUBLE */

#define STM2 STA
#define STN2(x, v0, v1, ovs) /* nop */

static inline void STM4(R *x, V v, INT ovs, const R *aligned_like)
{
     (void)aligned_like; /* UNUSED */
     *(x) = v[0];
     *(x+ovs) = v[1];
}
#  define STN4(x, v0, v1, v2, v3, ovs) /* nothing */
#endif


static inline V FLIP_RI(V x)
{
#ifdef FFTW_SINGLE
    return (V){x[1],x[0],x[3],x[2]};
#else
    return (V){x[1],x[0]};
#endif
}

static inline V VCONJ(V x)
{
#ifdef FFTW_SINGLE
    return (V){x[0],-x[1],x[2],-x[3]};
#else
    return (V){x[0],-x[1]};
#endif
}

static inline V VBYI(V x)
{
     x = VCONJ(x);
     x = FLIP_RI(x);
     return x;
}

/* FMA support */
#define VFMA(a, b, c) VADD(c, VMUL(a, b))
#define VFNMS(a, b, c) VSUB(c, VMUL(a, b))
#define VFMS(a, b, c) VSUB(VMUL(a, b), c)
#define VFMAI(b, c) VADD(c, VBYI(b))
#define VFNMSI(b, c) VSUB(c, VBYI(b))
#define VFMACONJ(b,c)  VADD(VCONJ(b),c)
#define VFMSCONJ(b,c)  VSUB(VCONJ(b),c)
#define VFNMSCONJ(b,c) VSUB(c, VCONJ(b))

static inline V VZMUL(V tx, V sr)
{
     V tr = VDUPL(tx);
     V ti = VDUPH(tx);
     tr = VMUL(sr, tr);
     sr = VBYI(sr);
     return VFMA(ti, sr, tr);
}

static inline V VZMULJ(V tx, V sr)
{
     V tr = VDUPL(tx);
     V ti = VDUPH(tx);
     tr = VMUL(sr, tr);
     sr = VBYI(sr);
     return VFNMS(ti, sr, tr);
}

static inline V VZMULI(V tx, V sr)
{
     V tr = VDUPL(tx);
     V ti = VDUPH(tx);
     ti = VMUL(ti, sr);
     sr = VBYI(sr);
     return VFMS(tr, sr, ti);
}

static inline V VZMULIJ(V tx, V sr)
{
     V tr = VDUPL(tx);
     V ti = VDUPH(tx);
     ti = VMUL(ti, sr);
     sr = VBYI(sr);
     return VFMA(tr, sr, ti);
}

/* twiddle storage #1: compact, slower */
#ifdef FFTW_SINGLE
#  define VTW1(v,x)  \
  {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
static inline V BYTW1(const R *t, V sr)
{
    return VZMUL(LDA(t, 2, t), sr);
}
static inline V BYTWJ1(const R *t, V sr)
{
    return VZMULJ(LDA(t, 2, t), sr);
}
#else /* !FFTW_SINGLE */
#  define VTW1(v,x) {TW_CEXP, v, x}
static inline V BYTW1(const R *t, V sr)
{
     V tx = LD(t, 1, t);
     return VZMUL(tx, sr);
}
static inline V BYTWJ1(const R *t, V sr)
{
     V tx = LD(t, 1, t);
     return VZMULJ(tx, sr);
}
#endif
#define TWVL1 (VL)

/* twiddle storage #2: twice the space, faster (when in cache) */
#ifdef FFTW_SINGLE
#  define VTW2(v,x)                                                     \
  {TW_COS, v, x}, {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+1, x},   \
  {TW_SIN, v, -x}, {TW_SIN, v, x}, {TW_SIN, v+1, -x}, {TW_SIN, v+1, x}
#else /* !FFTW_SINGLE */
#  define VTW2(v,x)                                                     \
  {TW_COS, v, x}, {TW_COS, v, x}, {TW_SIN, v, -x}, {TW_SIN, v, x}
#endif
#define TWVL2 (2 * VL)
static inline V BYTW2(const R *t, V sr)
{
     const V *twp = (const V *)t;
     V si = FLIP_RI(sr);
     V tr = twp[0], ti = twp[1];
     return VFMA(tr, sr, VMUL(ti, si));
}
static inline V BYTWJ2(const R *t, V sr)
{
     const V *twp = (const V *)t;
     V si = FLIP_RI(sr);
     V tr = twp[0], ti = twp[1];
     return VFNMS(ti, si, VMUL(tr, sr));
}

/* twiddle storage #3 */
#ifdef FFTW_SINGLE
#  define VTW3(v,x) {TW_CEXP, v, x}, {TW_CEXP, v+1, x}
#  define TWVL3 (VL)
#else
#  define VTW3(v,x) VTW1(v,x)
#  define TWVL3 TWVL1
#endif

/* twiddle storage for split arrays */
#ifdef FFTW_SINGLE
#  define VTWS(v,x)                                                       \
    {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_COS, v+2, x}, {TW_COS, v+3, x}, \
    {TW_SIN, v, x}, {TW_SIN, v+1, x}, {TW_SIN, v+2, x}, {TW_SIN, v+3, x}
#else
#  define VTWS(v,x)                                                       \
    {TW_COS, v, x}, {TW_COS, v+1, x}, {TW_SIN, v, x}, {TW_SIN, v+1, x}
#endif
#define TWVLS (2 * VL)

#define VLEAVE() /* nothing */

#include "simd-common.h"