File: GarchSimulation.R

package info (click to toggle)
fgarch 260.72-3
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 624 kB
  • ctags: 337
  • sloc: fortran: 4,184; makefile: 13
file content (213 lines) | stat: -rwxr-xr-x 7,465 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA  02111-1307  USA

# Copyrights (C)
# for this R-port: 
#   1999 - 2007, Diethelm Wuertz, GPL
#   Diethelm Wuertz <wuertz@itp.phys.ethz.ch>
#   info@rmetrics.org
#   www.rmetrics.org
# for the code accessed (or partly included) from other R-ports:
#   see R's copyright and license files
# for the code accessed (or partly included) from contributed R-ports
# and other sources
#   see Rmetrics's copyright file


################################################################################
# FUNCTION:               SIMULATION:
#  garchSim                Simulates a GARCH/APARCH process
#  .garchSim               Simulates a GARCH/APARCH from specification object
################################################################################


garchSim =
function (model = list(omega = 1.0e-6, alpha = 0.1, beta = 0.8), n = 100, 
n.start = 100, presample = NULL, cond.dist = c("rnorm", "rged", "rstd", 
"rsnorm", "rsged", "rsstd"), rseed = NULL)
{   # A function implemented by Diethelm Wuertz

    # Description:
    #   Simulates a time series process from the GARCH family
    
    # Arguments:
    #   model - either a specification object of class 'garchSpec' 
    #     or a list with the model parameters as entries
    #     ar - a vector of autoregressive coefficients of 
    #       length m for the ARMA specification,
    #     ma - a vector of moving average coefficients of 
    #       length n for the ARMA specification,
    #     omega - the variance value for GARCH/APARCH 
    #       specification,
    #     alpha - a vector of autoregressive coefficients 
    #       of length p for the GARCH/APARCH specification,
    #     gamma - a vector of leverage coefficients of 
    #       length p for the APARCH specification,
    #     beta - a vector of moving average coefficients of 
    #       length q for the GARCH/APARCH specification,
    #     mu - the mean value for ARMA specification,
    #     delta - the exponent value used in the variance 
    #       equation.
    #     skew - a numeric value for the skew parameter.
    #     shape - a numeric value for the shape parameter.
    #   n - an integer, the length of the series
    #   n.start - the length of the warm-up sequence to reduce the 
    #       effect of initial conditions. 
    #   presample - either a multivariate "timeSeries", a 
    #       multivariate "ts", a "data.frame" object or a numeric 
    #       "matrix" with 3 columns and at least max(m,n,p,q) 
    #       rows. The first culumn ...
    #   cond.dist - a character string naming the conditional distribution 
    #       function. Valid strings are: "rnorm", "rged", "rstd", "rsnorm", 
    #       "rsged", and "rsstd".
    
    # Notes:
    #   The parameters omega, alpha, and beta in the model list
    #   must be explicitely specified, otherwise a warning message 
    #   will be printed. The other parameters will be assigned by 
    #   default values.
    
    # FUNCTION:
    
    # Simulate Series:
    if (class(model) == "list") {
        # Create Specification Object:
        spec = garchSpec(model = model, presample = presample, 
            cond.dist = cond.dist, rseed = rseed)
        ans = .garchSim(n = n, n.start = n.start, spec = spec)
    } else if (class(model) == "garchSpec") {
        ans = .garchSim(n = n, n.start = n.start, spec = model)
    } else {
        stop("model must be an object of class list or garchSpec")
    }

    # Return Value:
    ans
}


# ------------------------------------------------------------------------------


.garchSim =
function(n = 1000, n.start = 1000, spec = garchSpec())
{   # A function implemented by Diethelm Wuertz
    
    # Description:
    #   Simulates GARCH series from 'garchSpec'
    
    # Arguments:
    #   n - length of time series
    #   spec - GARCH specification structure
    
    # FUNCTION:
    
    # Random Seed:
    if (spec@rseed != 0) set.seed(spec@rseed)
  
    # Enlarge Series:
    n = n + n.start
    
    # Determine Orders:
    order.ar = order.ma = order.alpha = order.gamma = order.beta = 1    
    if (sum(abs(spec@model$ar)) != 0) {  
        model.ar = spec@model$ar
        order.ar = length(spec@model$ar) 
    } else {
        model.ar = 0
    }
    if (sum(abs(spec@model$ma)) != 0) {
        model.ma = spec@model$ma
        order.ma = length(spec@model$ma)
    } else {
        model.ma = 0
    }
    if (sum(abs(spec@model$alpha)) != 0) {
        model.alpha = spec@model$alpha
        order.alpha = length(spec@model$alpha)
    } else {
        model.alpha = 0
    }
    if (sum(abs(spec@model$gamma)) != 0) {
        model.gamma = spec@model$gamma
        order.gamma = length(spec@model$gamma)
    } else {
        model.gamma = 0
    }
    if (sum(abs(spec@model$beta)) != 0) {
        model.beta = spec@model$beta
        order.beta = length(spec@model$beta)
    } else {
        model.beta = 0
    }
  
    # Create Innovations:
    if (spec@distribution == "rnorm")     
        z = rnorm(n)
    if (spec@distribution == "rged")      
        z = rged(n, nu = spec@model$shape)
    if (spec@distribution == "rstd")       
        z = rstd(n, nu = spec@model$shape)
    if (spec@distribution == "rsnorm") 
        z = rsnorm(n, xi = spec@model$skew)
    if (spec@distribution == "rsged")  
        z = rsged(n, nu = spec@model$shape, xi = spec@model$skew)
    if (spec@distribution == "rsstd")   
        z = rsstd(n, nu = spec@model$shape, xi = spec@model$skew)
    
    # Expand to whole Sample:
    delta = spec@model$delta
    z = c(rev(spec@presample[, 1]), z)
    h = c(rev(spec@presample[, 2])^delta, rep(NA, times = n))
    y = c(rev(spec@presample[, 3]), rep(NA, times = n))
    m = length(spec@presample[, 1])
    names(z) = names(h) = names(y) = NULL
        
    # Iterate APARCH Model:
    # [This includes the GARCH case]
    deltainv = 1/delta
    eps = h^deltainv*z
    for (i in (m+1):(n+m)) {
        h[i] =  spec@model$omega +  
            sum(model.alpha*(abs(eps[i-(1:order.alpha)]) -  
                model.gamma*(eps[i-(1:order.alpha)]))^delta) +
            sum(model.beta*h[i-(1:order.beta)]) 
        eps[i] = h[i]^deltainv * z[i]
        y[i] = spec@model$mu  +    
            sum(model.ar*y[i-(1:order.ar)]) +
            sum(model.ma*(h[i-(1:order.ma)]**deltainv)) + eps[i]   
    }
    
    # Sample:       
    data = cbind(
        z = z[(m+1):(n+m)], 
        h = h[(m+1):(n+m)]^deltainv, 
        y = y[(m+1):(n+m)])
    rownames(data) = as.character(1:n)
    data = data[-(1:n.start),]
        
    # Add Series:
    # spec@series = data[, 1:2]
    ans = ts(as.vector(data[, 3]))
    attr(ans, "spec") = spec
  
    # Return Value: 
    ans
}


################################################################################