1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
\name{garchFitControl}
\alias{garchFitControl}
\title{GARCH Fitting Algorithms and Control}
\description{
Estimates the parameters of an univariate GARCH process.
}
\usage{
garchFitControl(
llh = c("filter", "internal", "testing"),
nlminb.eval.max = 2000,
nlminb.iter.max = 1500,
nlminb.abs.tol = 1.0e-20,
nlminb.rel.tol = 1.0e-14,
nlminb.x.tol = 1.0e-14,
nlminb.step.min = 2.2e-14,
nlminb.scale = 1,
nlminb.fscale = FALSE,
nlminb.xscale = FALSE,
sqp.mit = 200,
sqp.mfv = 500,
sqp.met = 2,
sqp.mec = 2,
sqp.mer = 1,
sqp.mes = 4,
sqp.xmax = 1.0e3,
sqp.tolx = 1.0e-16,
sqp.tolc = 1.0e-6,
sqp.tolg = 1.0e-6,
sqp.told = 1.0e-6,
sqp.tols = 1.0e-4,
sqp.rpf = 1.0e-4,
lbfgsb.REPORT = 10,
lbfgsb.lmm = 20,
lbfgsb.pgtol = 1e-14,
lbfgsb.factr = 1,
lbfgsb.fnscale = FALSE,
lbfgsb.parscale = FALSE,
nm.ndeps = 1e-14,
nm.maxit = 10000,
nm.abstol = 1e-14,
nm.reltol = 1e-14,
nm.alpha = 1.0,
nm.beta = 0.5,
nm.gamma = 2.0,
nm.fnscale = FALSE,
nm.parscale = FALSE)
}
\arguments{
% In general:
\item{llh}{
llh = c("filter", "internal", "testing")[1],
defaults to "filter".
}
% nlminb:
\item{nlminb.eval.max}{
Maximum number of evaluations of the objective function
allowed, defaults to 200.
}
\item{nlminb.iter.max}{
Maximum number of iterations allowed, defaults to 150.
}
%\item{nlminb.trace}{
% The value of the objective function and the parameters is
% printed every trace'th iteration. Defaults to 0 which
% indicates no trace information is to be printed.
% }
\item{nlminb.abs.tol}{
Absolute tolerance, defaults to 1e-20.
}
\item{nlminb.rel.tol}{
Relative tolerance, defaults to 1e-10.
}
\item{nlminb.x.tol}{
X tolerance, defaults to 1.5e-8.
}
\item{nlminb.fscale}{
defaults to FALSE.
}
\item{nlminb.xscale}{
defaulkts to FALSE.
}
\item{nlminb.step.min}{
Minimum step size, defaults to 2.2e-14.
}
\item{nlminb.scale}{
defaults to 1.
}
% sqp:
%\item{sqp.iprnt}{
% as.integer(trace). Default to 1.
% }
\item{sqp.mit}{
maximum number of iterations, defaults to 200.
}
\item{sqp.mfv}{
maximum number of function evaluations, defaults to 500.
}
\item{sqp.met}{
specifies scaling strategy:\cr
sqp.met=1 - no scaling\cr
sqp.met=2 - preliminary scaling in 1st iteration (default)\cr
sqp.met=3 - controlled scaling\cr
sqp.met=4 - interval scaling \cr
sqp.met=5 - permanent scaling in all iterations
}
\item{sqp.mec}{
correction for negative curvature:\cr
sqp.mec=1 - no correction\cr
sqp.mec=2 - Powell correction (default)
}
\item{sqp.mer}{
restarts after unsuccessful variable metric updates:\cr
sqp.mer=0 - no restarts\cr
sqp.mer=1 - standard restart
}
\item{sqp.mes}{
interpolation method selection in a line search:\cr
sqp.mes=1 - bisection\cr
sqp.mes=2 - two point quadratic interpolation\cr
sqp.mes=3 - three point quadratic interpolation\cr
sqp.mes=4 - three point cubic interpolation (default)
}
\item{sqp.xmax}{
maximum stepsize, defaults to 1.0e+3.
}
\item{sqp.tolx}{
tolerance for the change of the coordinate vector,
defaults to 1.0e-16.
}
\item{sqp.tolc}{
tolerance for the constraint violation,
defaults to 1.0e-6.
}
\item{sqp.tolg}{
tolerance for the Lagrangian function gradient,
defaults to 1.0e-6.
}
\item{sqp.told}{
defaults to 1.0e-6.
}
\item{sqp.tols}{
defaults to 1.0e-4.
}
\item{sqp.rpf}{
value of the penalty coefficient,
default to1.0D-4.
The default velue may be relatively small. Therefore, larger
value, say one, can sometimes be more suitable.
}
% optim[lbfgsb]:
\item{lbfgsb.REPORT}{
The frequency of reports for the "BFGS" and "L-BFGS-B" methods if
control\$trace is positive. Defaults to every 10 iterations.
}
\item{lbfgsb.lmm}{
is an integer giving the number of BFGS updates retained in
the "L-BFGS-B" method, It defaults to 5.
}
\item{lbfgsb.factr}{
controls the convergence of the "L-BFGS-B" method. Convergence
occurs when the reduction in the objective is within this factor
of the machine tolerance. Default is 1e7, that is a tolerance
of about 1.0e-8.
}
\item{lbfgsb.pgtol}{
helps control the convergence of the "L-BFGS-B" method. It is a
tolerance on the projected gradient in the current search
direction. This defaults to zero, when the check is suppressed.
}
\item{lbfgsb.fnscale}{
defaults to FALSE.
}
\item{lbfgsb.parscale}{
defaults to FALSE.
}
% optim[nm]:
%\item{nm.trace}{
% Non-negative integer. If positive, tracing information on the
% progress of the optimization is produced. Higher values may
% produce more tracing information: for method "L-BFGS-B" there
% are six levels of tracing. (To understand exactly what these
% do see the source code: higher levels give more detail.)
% }
\item{nm.ndeps}{
A vector of step sizes for the finite-difference approximation
to the gradient, on par/parscale scale. Defaults to 1e-3.
}
\item{nm.maxit}{
The maximum number of iterations. Defaults to 100 for the
derivative-based methods, and 500 for "Nelder-Mead". For "SANN"
maxit gives the total number of function evaluations. There is
no other stopping criterion. Defaults to 10000.
}
\item{nm.abstol}{
The absolute convergence tolerance. Only useful for non-negative
functions, as a tolerance for reaching zero.
}
\item{nm.reltol}{
Relative convergence tolerance. The algorithm stops if it is
unable to reduce the value by a factor of
reltol * (abs(val) + reltol) at a step. Defaults to
sqrt(.Machine\$double.eps), typically about 1e-8.
}
\item{nm.alpha, nm.beta, nm.gamma}{
Scaling parameters for the "Nelder-Mead" method.
alpha is the reflection factor (default 1.0),
beta the contraction factor (0.5), and
gamma the expansion factor (2.0).
}
\item{nm.fnscale}{
An overall scaling to be applied to the value of fn and gr
during optimization. If negative, turns the problem into a
maximization problem. Optimization is performed on
fn(par)/fnscale.
}
\item{nm.parscale}{
A vector of scaling values for the parameters. Optimization is
performed on par/parscale and these should be comparable in the
sense that a unit change in any element produces about a unit
change in the scaled value.
}
}
\value{
returns a list.
}
\author{
Diethelm Wuertz for the Rmetrics \R-port,\cr
R Core Team for the 'optim' \R-port,\cr
Douglas Bates and Deepayan Sarkar for the 'nlminb' \R-port,\cr
Bell-Labs for the underlying PORT Library,\cr
Ladislav Luksan for the underlying Fortran SQP Routine, \cr
Zhu, Byrd, Lu-Chen and Nocedal for the underlying L-BFGS-B Routine.
}
\examples{
##
}
\keyword{models}
|