File: garchFitControl.Rd

package info (click to toggle)
fgarch 3010.82-1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 812 kB
  • ctags: 14
  • sloc: fortran: 334; makefile: 13
file content (273 lines) | stat: -rw-r--r-- 8,084 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
\name{garchFitControl}


\alias{garchFitControl}


\title{GARCH Fitting Algorithms and Control}


\description{

    Estimates the parameters of an univariate GARCH process.

}


\usage{    
garchFitControl(
    llh = c("filter", "internal", "testing"),
    nlminb.eval.max = 2000, 
    nlminb.iter.max = 1500,
    nlminb.abs.tol = 1.0e-20, 
    nlminb.rel.tol = 1.0e-14, 
    nlminb.x.tol = 1.0e-14, 
    nlminb.step.min = 2.2e-14,
    nlminb.scale = 1, 
    nlminb.fscale = FALSE,
    nlminb.xscale = FALSE,      
    sqp.mit = 200,       
    sqp.mfv = 500,       
    sqp.met = 2,                                 
    sqp.mec = 2,                                
    sqp.mer = 1,                                  
    sqp.mes = 4,                                 
    sqp.xmax = 1.0e3,    
    sqp.tolx = 1.0e-16,    
    sqp.tolc = 1.0e-6,   
    sqp.tolg = 1.0e-6,  
    sqp.told = 1.0e-6,  
    sqp.tols = 1.0e-4,  
    sqp.rpf = 1.0e-4,
    lbfgsb.REPORT = 10,
    lbfgsb.lmm = 20, 
    lbfgsb.pgtol = 1e-14, 
    lbfgsb.factr = 1, 
    lbfgsb.fnscale = FALSE,
    lbfgsb.parscale = FALSE,   
    nm.ndeps = 1e-14,
    nm.maxit = 10000, 
    nm.abstol = 1e-14,
    nm.reltol = 1e-14, 
    nm.alpha = 1.0, 
    nm.beta = 0.5, 
    nm.gamma = 2.0,
    nm.fnscale = FALSE, 
    nm.parscale = FALSE)
}


\arguments{ 
        
    % In general:
        
    \item{llh}{
        llh = c("filter", "internal", "testing")[1],
        defaults to "filter".
        }
                   
    % nlminb:
    
    \item{nlminb.eval.max}{
        Maximum number of evaluations of the objective function 
        allowed, defaults to 200.
        }
    \item{nlminb.iter.max}{
        Maximum number of iterations allowed, defaults to 150.
        } 
    %\item{nlminb.trace}{
    %    The value of the objective function and the parameters is 
    %    printed every trace'th iteration. Defaults to 0 which 
    %    indicates no trace information is to be printed.
    %    } 
    \item{nlminb.abs.tol}{
        Absolute tolerance, defaults to 1e-20.
        }
    \item{nlminb.rel.tol}{
        Relative tolerance, defaults to 1e-10. 
        }
    \item{nlminb.x.tol}{
        X tolerance, defaults to 1.5e-8. 
        }
    \item{nlminb.fscale}{
        defaults to FALSE.
        }
    \item{nlminb.xscale}{ 
        defaulkts to FALSE.
        }
    \item{nlminb.step.min}{
        Minimum step size, defaults to 2.2e-14. 
        }
    \item{nlminb.scale}{
        defaults to 1.
        }    

    % sqp:

    %\item{sqp.iprnt}{
    %    as.integer(trace). Default to 1.
    %    } 
    \item{sqp.mit}{
        maximum number of iterations, defaults to 200.
        }
    \item{sqp.mfv}{
        maximum number of function evaluations, defaults to 500.
        }
    \item{sqp.met}{
        specifies scaling strategy:\cr
        sqp.met=1 - no scaling\cr 
        sqp.met=2 - preliminary scaling in 1st iteration (default)\cr
        sqp.met=3 - controlled scaling\cr
        sqp.met=4 - interval scaling \cr
        sqp.met=5 - permanent scaling in all iterations 
        }
    \item{sqp.mec}{
        correction for negative curvature:\cr
        sqp.mec=1 - no correction\cr
        sqp.mec=2 - Powell correction (default)
        }
    \item{sqp.mer}{
        restarts after unsuccessful variable metric updates:\cr
        sqp.mer=0 - no restarts\cr
        sqp.mer=1 - standard restart 
        }
    \item{sqp.mes}{
        interpolation method selection in a line search:\cr
        sqp.mes=1 - bisection\cr
        sqp.mes=2 - two point quadratic interpolation\cr
        sqp.mes=3 - three point quadratic interpolation\cr
        sqp.mes=4 - three point cubic interpolation (default) 
        }           
    \item{sqp.xmax}{
        maximum stepsize, defaults to 1.0e+3.
        } 
    \item{sqp.tolx}{
        tolerance for the change of the coordinate vector,
        defaults to 1.0e-16.
        } 
    \item{sqp.tolc}{
        tolerance for the constraint violation,
        defaults to 1.0e-6.
        } 
    \item{sqp.tolg}{
        tolerance for the Lagrangian function gradient,
        defaults to 1.0e-6. 
        }  
    \item{sqp.told}{
        defaults to 1.0e-6.
        }  
    \item{sqp.tols}{
        defaults to 1.0e-4.
        }
    \item{sqp.rpf}{
        value of the penalty coefficient,
        default to1.0D-4.
        The default velue may be relatively small. Therefore, larger
        value, say one, can sometimes be more suitable.
        } 
        
    % optim[lbfgsb]:
    
    \item{lbfgsb.REPORT}{
        The frequency of reports for the "BFGS" and "L-BFGS-B" methods if 
        control\$trace is positive. Defaults to every 10 iterations.
        } 
    \item{lbfgsb.lmm}{
        is an integer giving the number of BFGS updates retained in 
        the "L-BFGS-B" method, It defaults to 5. 
        }
    \item{lbfgsb.factr}{
        controls the convergence of the "L-BFGS-B" method. Convergence 
        occurs when the reduction in the objective is within this factor 
        of the machine tolerance. Default is 1e7, that is a tolerance 
        of about 1.0e-8. 
        }
    \item{lbfgsb.pgtol}{
        helps control the convergence of the "L-BFGS-B" method. It is a 
        tolerance on the projected gradient in the current search 
        direction. This defaults to zero, when the check is suppressed.
        } 
    \item{lbfgsb.fnscale}{
        defaults to FALSE.
        }
    \item{lbfgsb.parscale}{ 
        defaults to FALSE. 
        }  
        
    % optim[nm]:
    
    %\item{nm.trace}{
    %    Non-negative integer. If positive, tracing information on the 
    %    progress of the optimization is produced. Higher values may 
    %    produce more tracing information: for method "L-BFGS-B" there 
    %   are six levels of tracing. (To understand exactly what these 
    %   do see the source code: higher levels give more detail.)
    %   } 
    \item{nm.ndeps}{
        A vector of step sizes for the finite-difference approximation 
        to the gradient, on par/parscale scale. Defaults to 1e-3.
        } 
    \item{nm.maxit}{
        The maximum number of iterations. Defaults to 100 for the 
        derivative-based methods, and 500 for "Nelder-Mead". For "SANN" 
        maxit gives the total number of function evaluations. There is 
        no other stopping criterion. Defaults to 10000.
        } 
    \item{nm.abstol}{
        The absolute convergence tolerance. Only useful for non-negative 
        functions, as a tolerance for reaching zero.
        } 
    \item{nm.reltol}{
        Relative convergence tolerance. The algorithm stops if it is 
        unable to reduce the value by a factor of 
        reltol * (abs(val) + reltol) at a step. Defaults to 
        sqrt(.Machine\$double.eps), typically about 1e-8. 
        }
    \item{nm.alpha, nm.beta, nm.gamma}{
        Scaling parameters for the "Nelder-Mead" method. 
        alpha is the reflection factor (default 1.0), 
        beta the contraction factor (0.5), and 
        gamma the expansion factor (2.0). 
        }
    \item{nm.fnscale}{
        An overall scaling to be applied to the value of fn and gr 
        during optimization. If negative, turns the problem into a 
        maximization problem. Optimization is performed on 
        fn(par)/fnscale. 
        }
    \item{nm.parscale}{
        A vector of scaling values for the parameters. Optimization is 
        performed on par/parscale and these should be comparable in the 
        sense that a unit change in any element produces about a unit 
        change in the scaled value. 
        }
    
}


\value{
    
    returns a list.
      
}


\author{

    Diethelm Wuertz for the Rmetrics \R-port,\cr
    R Core Team for the 'optim' \R-port,\cr
    Douglas Bates and Deepayan Sarkar for the 'nlminb' \R-port,\cr
    Bell-Labs for the underlying PORT Library,\cr
    Ladislav Luksan for the underlying Fortran SQP Routine, \cr
    Zhu, Byrd, Lu-Chen and Nocedal for the underlying L-BFGS-B Routine.
    
}


\examples{  
## 
}


\keyword{models}