1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
################################################################################
# FUNCTION: PARAMETER ESTIMATION:
# garchFit Fits the parameters of GARCH process
# .garchArgsParser Parses formula and data for garchFit
# .garchOptimizerControl Sets default values for Garch Optimizer
# .garchFit ... old Version, still in use by garchFit()
# .garchNames Slot names, @fit slot, parameters and controls
################################################################################
garchFit <-
function(formula = ~ garch(1,1), data,
init.rec = c("mci", "uev"),
delta = 2,
skew = 1,
shape = 4,
cond.dist = c("norm", "snorm", "ged", "sged", "std", "sstd", "snig", "QMLE"),
include.mean = TRUE,
include.delta = NULL,
include.skew = NULL,
include.shape = NULL,
leverage = NULL,
trace = TRUE,
algorithm = c("nlminb", "lbfgsb", "nlminb+nm", "lbfgsb+nm"),
hessian = c("ropt", "rcd"),
control = list(),
title = NULL,
description = NULL,
...)
{
# A function implemented by Diethelm Wuertz
# Description:
# Fit parameters to a ARMA-GARCH model by Formula Specification
# Arguments:
# formula - ARMA(m,n) + GARCH/APARCH(p,q) mean and variance
# specification
# data - any univariate time series which can be converted
# into a timeSeries using the generic function as.timeSeries
# init.rec - names type of initialization of recurrence
# mci = mu-current-iteration, or
# uev = unconditional-expected-variances
# delta - numeric value of the exponent delta
# skew - optional skewness or skewness related parameter
# shape - optional shape parameter
# cond.dist - name of the conditional distribution, one of
# norm, snorm, ged, sged, std, sstd, snig, QMLE
# include.mean - a logical, should the mean value be estimated ?
# include.delta - should the exponent be estimated ?
# leverage - should the leverage factors be estimated ?
# trace - should the optimization be traced ?
# control - list of additional control parameters for the solver
# title - an optional title string
# description - an optional project description string
# Example:
# garchFit()
# FUNCTION:
# DEBUG:
DEBUG = FALSE
# Match arguments:
init.rec = match.arg(init.rec)
cond.dist = match.arg(cond.dist)
hessian = match.arg(hessian)
algorithm = match.arg(algorithm)
# Call:
CALL = match.call()
# Parse formula and data for garchFit ...
# Note in the new version we are working with timeSeries ...
Name = capture.output(substitute(data))
if(is.character(data)) {
eval(parse(text = paste("data(", data, ")")))
data = eval(parse(text = data))
}
# data <- if (inherits(data, "timeSeries") data else as.timeSeries(data)
data <- as.data.frame(data)
# Column Names:
if (isUnivariate(data)) {
colnames(data) <- "data"
} else {
# Check unique column Names:
uniqueNames = unique(sort(colnames(data)))
if (is.null(colnames(data))) {
stop("Column names of data are missing.")
}
if (length(colnames(data)) != length(uniqueNames)) {
stop("Column names of data are not unique.")
}
}
# Handle if we have no left-hand-side for the formula ...
# Note in this case the length of the formula is 2 (else 3):
if (length(formula) == 3 && isUnivariate(data) ) formula[2] <- NULL
if (length(formula) == 2) {
if (isUnivariate(data)) {
# Missing lhs -- we substitute the data file name as lhs ...
formula = as.formula(paste("data", paste(formula, collapse = " ")))
} else {
stop("Multivariate data inputs require lhs for the formula.")
}
}
# Robust Covariance ?
robust.cvar <- (cond.dist == "QMLE")
# Parse Arguments:
args = .garchArgsParser(formula = formula, data = data, trace = FALSE)
# DEBUG - Print Arguments:
if (DEBUG) print(list(
formula.mean = args$formula.mean,
formula.var = args$formula.var,
series = args$series,
init.rec = init.rec,
delta = delta,
skew = skew,
shape = shape,
cond.dist = cond.dist,
include.mean = include.mean,
include.delta = include.delta,
include.skew = include.skew,
include.shape = include.shape,
leverage = leverage,
trace = trace,
algorithm = algorithm,
hessian = hessian,
robust.cvar = robust.cvar,
control = control,
title = title,
description = description))
# Fit:
ans = .garchFit(
formula.mean = args$formula.mean,
formula.var = args$formula.var,
series = args$series,
init.rec,
delta,
skew,
shape,
cond.dist,
include.mean,
include.delta,
include.skew,
include.shape,
leverage,
trace,
algorithm,
hessian,
robust.cvar,
control,
title,
description,
...)
ans@call = CALL
attr(formula, "data") <- paste("data = ", Name, sep = "")
ans@formula = formula
# Return Value:
ans
}
################################################################################
|