File: garch-Spec.R

package info (click to toggle)
fgarch 4052.93-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 896 kB
  • sloc: fortran: 339; ansic: 18; makefile: 14
file content (234 lines) | stat: -rw-r--r-- 7,855 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA  02111-1307  USA


################################################################################
# FUNCTION:               SPECIFICATION:
#  garchSpec               Creates a 'garchSpec' object from scratch
###############################################################################


garchSpec <-
    function (model = list(), presample = NULL,
    cond.dist = c("norm", "ged", "std", "snorm", "sged", "sstd"),
    rseed = NULL)
{
    # A function implemented by Diethelm Wuertz

    # Description:
    #   Creates a "garchSpec" object from scratch.

    # Arguments:
    #   model - a list with the model parameters as entries
    #     omega - the variance value for GARCH/APARCH
    #       specification,
    #     alpha - a vector of autoregressive coefficients
    #       of length p for the GARCH/APARCH specification,
    #     gamma - a vector of leverage coefficients of
    #       length p for the APARCH specification,
    #     beta - a vector of moving average coefficients of
    #       length q for the GARCH/APARCH specification,
    #     mu - the mean value for ARMA specification,
    #     ar - a vector of autoregressive coefficients of
    #       length m for the ARMA specification,
    #     ma - a vector of moving average coefficients of
    #       length n for the ARMA specification,
    #     delta - the exponent value used in the variance equation.
    #     skew - a numeric value listing the distributional
    #        skewness parameter.
    #     shape - a numeric value listing the distributional
    #        shape parameter.
    #   presample - either a multivariate "timeSeries", a
    #       multivariate "ts", a "data.frame" object or a numeric
    #       "matrix" with 3 columns and at least max(m,n,p,q)
    #       rows. The first culumn are the innovations, the second
    #       the conditional variances, and the last the time series.
    #   condd.dist - a character string naming the distribution
    #       function.
    #   rseed - optional random seed.

    # Slots:
    #   call - the function call.
    #   formula - a formula object describing the model, e.g.
    #       ARMA(m,n) + GARCH(p,q). ARMA can be missing or
    #       specified as AR(m) or MA(n) in the case of pure
    #       autoregressive or moving average models. GARCH may
    #       alternatively specified as ARCH(p) or APARCH(p,q).
    #       If formula is set to "NA", the formula is constructed
    #       from the "model" list.
    #   model - as declared in the input.

    # FUNCTION:

    # Match Arguments:
    cond.dist = match.arg(cond.dist)

    # Skewness Parameter Settings:
    skew = list(
        "norm" = NULL,
        "ged" = NULL,
        "std" = NULL,
        "snorm" = 0.9,
        "sged" = 0.9,
        "sstd" = 0.9)

    # Shape Parameter Settings:
    shape = list(
        "norm" = NULL,
        "ged" = 2,
        "std" = 4,
        "snorm" = NULL,
        "sged" = 2,
        "sstd" = 4)

    # Default Model:
    control = list(
        omega = 1.0e-6,
        alpha = 0.1,
        gamma = NULL,
        beta = 0.8,
        mu = NULL,
        ar = NULL,
        ma = NULL,
        delta = 2,
        skew = skew[[cond.dist]],
        shape = shape[[cond.dist]]
        )

    # Update Control:
    control[names(model)] <- model
    model <- control

    # check if alpha and beta are well defined
    if (sum(c(model$alpha, model$beta))>1)
        warning("sum(alpha)+sum(beta)>1")

    # Model Orders:
    order.ar = length(model$ar)
    order.ma = length(model$ma)
    order.alpha = length(model$alpha)
    if (sum(model$beta) == 0) {
        order.beta = 0
    } else {
        order.beta = length(model$beta)
    }

    # Compose Mean Formula Object:
    if (order.ar == 0 && order.ma == 0) {
        formula.mean = ""
    }
    if (order.ar > 0 && order.ma == 0) {
        formula.mean = paste ("ar(", as.character(order.ar), ")", sep = "")
    }
    if (order.ar == 0 && order.ma > 0) {
        formula.mean = paste ("ma(", as.character(order.ma), ")",  sep = "")
    }
    if (order.ar > 0 && order.ma > 0) {
        formula.mean = paste ("arma(", as.character(order.ar), ", ",
            as.character(order.ma), ")", sep = "")
    }

    # Compose Variance Formula Object:
    formula.var = "garch"
    if (order.beta == 0) formula.var = "arch"
    if (!is.null(model$gamma) != 0) formula.var = "aparch"
    if (model$delta != 2) formula.var = "aparch"

    if (order.beta == 0) {
        formula.var = paste(formula.var, "(", as.character(order.alpha), ")",
            sep = "")
    } else {
        formula.var = paste(formula.var, "(", as.character(order.alpha),
            ", ", as.character(order.beta), ")", sep = "")
    }

    # Compose Mean-Variance Formula Object:
    if (formula.mean == "") {
        formula = as.formula(paste("~", formula.var))
    } else {
        formula = as.formula(paste("~", formula.mean, "+", formula.var))
    }

    # Add NULL default entries:
    if (is.null(model$mu)) model$mu = 0
    if (is.null(model$ar)) model$ar = 0
    if (is.null(model$ma)) model$ma = 0
    if (is.null(model$gamma)) model$gamma = rep(0, times = order.alpha)
    # print(unlist(model))

    # Seed:
    if (is.null(rseed)) {
        rseed = 0
    } else {
        set.seed(rseed)
    }

    # Define Missing Presample:
    order.max = max(order.ar, order.ma, order.alpha, order.beta)
    iterate = TRUE
    if (!is.matrix(presample)) {
        if (is.null(presample)) {
            iterate = FALSE
            n.start = order.max
        } else {
            n.start = presample
        }
        z = rnorm(n = n.start)
        # GARCH(p, q):
        h = rep(model$omega/(1-sum(model$alpha)-sum(model$beta)),
            times = n.start)
        y = rep(model$mu/(1-sum(model$ar)), times = n.start)
        # APARCH(p,q):
        #  ... we initialize all models with norm-GARCH(p,q) processes
    } else {
        z = presample[, 1]
        h = presample[, 2]
        y = presample[, 3]
    }
    presample = cbind(z, h, y)

    # Presample Iteration:
    if (iterate) {
        n.iterate = length(z) - order.max
        deltainv = 1/model$delta
        for (i in n.iterate:1) {
            h[i] = model$omega +
                sum(model$alpha*(abs(abs(y[i+(1:order.alpha)]) -
                    model$gamma*y[i+(1:order.alpha)])^model$delta)) +
                sum(model$beta*h[i+(1:order.beta)])
            y[i] = model$mu  +
                sum(model$ar*y[i+(1:order.ar)]) +
                sum(model$ma*(h[i+(1:order.ma)]**deltainv)) +
                h[i]^deltainv * z[i]
        }
    }

    # Result:
    new("fGARCHSPEC",
        call = match.call(),
        formula = formula,
        model = list(omega = model$omega, alpha = model$alpha,
            gamma = model$gamma, beta = model$beta, mu = model$mu,
            ar = model$ar, ma = model$ma, delta = model$delta,
            skew = model$skew, shape = model$shape),
        presample = as.matrix(presample),
        distribution = as.character(cond.dist),
        rseed = as.numeric(rseed)
    )
}


################################################################################