1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
################################################################################
# FUNCTION: PARAMETER ESTIMATION:
# .gogarchFit Fits the parameters of a GO-GARCH process
################################################################################
.gogarchFit <-
function(formula = ~ garch(1, 1), data,
init.rec = c("mci", "uev"),
delta = 2,
skew = 1,
shape = 4,
cond.dist = c("norm", "snorm", "ged", "sged", "std", "sstd", "snig", "QMLE"),
include.mean = TRUE,
include.delta = NULL,
include.skew = NULL,
include.shape = NULL,
leverage = NULL,
trace = TRUE,
algorithm = c("nlminb", "lbfgsb", "nlminb+nm", "lbfgsb+nm"),
hessian = c("ropt", "rcd"),
control = list(),
title = NULL,
description = NULL,
...)
{
# A function implemented by Diethelm Wuertz
# Description:
# Fits a GO-Garch Model using Independent Component Analysis
# Arguments:
# The arguments are the same as for the univariate case.
# formula - formula for all marginal models
# data - multivariate timeSeries object
# ...
# Value:
# S4 Object of class (univariate) fGARCH ...
# Notes:
# This function has still a preliminary status ...
# This function was inspired from the contributed gogarch
# package of Bernhard Pfaff.
# Example:
# require(fEcofin); data(DowJones30)
# X = returns(as.timeSeries(DowJones30)); head(X)
# N = 5; ans = .gogarchFit(data = X[, 1:N], trace = FALSE); ans
# ans@h.t
# FUNCTION:
# Multivariate ?
stopifnot(isMultivariate(data))
# Data:
X = data
# Marginal Garch Models:
garchControl = list(
init.rec = init.rec, delta = delta, skew = skew, shape = shape,
cond.dist = cond.dist, include.mean = include.mean,
include.delta = include.delta, include.skew = include.skew,
include.shape = include.shape, leverage = leverage,
trace = trace, algorithm = algorithm, hessian = hessian,
control = control, title = title, description = description)
# Compute fastICA:
# ... the following lines of code were borrowed from
# Bernhard Pfaff's contributed package gogarch
V <- t(X) %*% X / nrow(X)
svd <- svd(V)
P <- svd$u
Dsqr <- diag(sqrt(svd$d))
# set.seed(4711)
ica <- fastICA::fastICA(X, n.comp = ncol(X))
Z <- P %*% Dsqr %*% t(P) %*% ica$W
colnames(Z) = rownames(Z) = colnames(data)
Y <- X %*% solve(Z)
# Fit Marginal Garch Models:
fit <- apply(Y, 2, function(x) do.call("garchFit",
c(list(formula = formula, data = x), garchControl)))
# Compute Conditional Variances:
# ... the following lines of code were borrowed from
# Bernhard Pfaff's contributed package gogarch
H <- matrix(unlist(lapply(fit, function(x) x@h.t)),
ncol = ncol(X), nrow = nrow(X))
Hdf <- data.frame(t(H))
rownames(Hdf) <- colnames(data)
colnames(Hdf) <- rownames(data)
H.t <- lapply(Hdf, function(x) Z %*% diag(x) %*% t(Z))
# Add Title and Description:
if(is.null(title)) title = "ICA GO-GARCH Modelling"
if(is.null(description)) description = description()
# Result:
ans <- new("fGARCH",
call = as.call(match.call()),
formula = formula,
method = "ICA go-Garch Parmeter Estimation",
data = c(Records = nrow(data), Instruments = ncol(data)),
fit = fit,
residuals = numeric(),
fitted = numeric(),
h.t = c(Records = length(H.t), Dimension =dim(H.t[[1]])),
sigma.t = numeric(),
title = title,
description = description
)
# Multivariate Series:
attr(ans@data, "data") <- data
attr(ans@h.t, "H.t") <- H.t
# Return Value:
ans
}
################################################################################
|