File: runit.sstd.R

package info (click to toggle)
fgarch 4052.93-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 896 kB
  • sloc: fortran: 339; ansic: 18; makefile: 14
file content (135 lines) | stat: -rw-r--r-- 4,557 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA  02111-1307  USA

# Copyrights (C)
# for this R-port: 
#   1999 - 2008, Diethelm Wuertz, Rmetrics Foundation, GPL
#   Diethelm Wuertz <wuertz@itp.phys.ethz.ch>
#   info@rmetrics.org
#   www.rmetrics.org
# for the code accessed (or partly included) from other R-ports:
#   see R's copyright and license files
# for the code accessed (or partly included) from contributed R-ports
# and other sources
#   see Rmetrics's copyright file


################################################################################ 
# FUNCTION:              VARIANCE-1 STUDENT-T DISTRIBUTION:
#  dstd                   Density for the Student-t Distribution
#  pstd                   Probability function for the Student-t Distribution
#  qstd                   Quantile function for the Student-t Distribution
#  rstd                   Random Number Generator for the Student-t
# FUNCTION:              SKEW VARIANCE-1 STUDENT-T DISTRIBUTION:
#  dsstd                  Density for the skewed Student-t Distribution
#  psstd                  Probability function for the skewed STD
#  qsstd                  Quantile function for the skewed STD
#  rsstd                  Random Number Generator for the skewed STD
#  stdSlider              Displays Variance-1 Student-t Distribution and RVS
# FUNCTION:              PARAMETER ESTIMATION:              
#  stdFit                 Fit the parameters for a Sudent-t distribution
#  sstdFit                Fit the parameters for a skew Sudent-t distribution
################################################################################


test.sstdDist <-  
    function()
{ 
    # Standardized Student-t Distribution:
    RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion")
    set.seed(4711, kind = "Marsaglia-Multicarry")
    
    # Test:
    test = fBasics::distCheck("std",  mean = 0, sd = 1, nu = 5, robust = FALSE) 
    print(test)                                    
    
    # Skew Standardized Student-t Distribution:
    RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion")
    set.seed(4711, kind = "Marsaglia-Multicarry")
    
    # Test:
    test = fBasics::distCheck("sstd", mean = 0, sd = 1, nu = 5, xi = 1.5, robust = FALSE) 
    print(test)                                     
    
    # Return Value:
    return()    
}


# ------------------------------------------------------------------------------


test.stdFit <- 
    function()
{         
    # Fit the parameters for a Student-t distribution
    # stdFit - Fit the parameters for a Sudent-t distribution
    
    # Standardized Student-t Distribution:
    RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion")
    set.seed(4711, kind = "Marsaglia-Multicarry")
    
    # Series:
    x = rstd(n = 2500, mean = 0, sd = 1, nu = 5)
    
    # Fit:
    fit = stdFit(x)
    print(fit)
             
    # Fit the parameters for a skew Sudent-t distribution
    # sstdFit - Fit the parameters for a Sudent-t distribution
    
    # Skew Standardized Student-t Distribution:
    RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion")
    set.seed(4711, kind = "Marsaglia-Multicarry")
    
    # Series:
    x = rsstd(n = 2500, mean = 0, sd = 1, nu = 5, xi = 1.5)
    
    # Fit:
    fit = sstdFit(x)
    print(fit)
    
    # Return Value:
    return()    
}


# ------------------------------------------------------------------------------


test.sstdSlider <- 
    function()
{   
    # Try Distribution:
    # sstdSlider(type = "dist")                              
    NA
    
    # Try Random Variates:
    RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion")
    set.seed(4711, kind = "Marsaglia-Multicarry")
    
    # sstdSlider(type = "rand")
    NA
    
    # Return Value:
    return()    
}



################################################################################