1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
# Copyrights (C)
# for this R-port:
# 1999 - 2008, Diethelm Wuertz, Rmetrics Foundation, GPL
# Diethelm Wuertz <wuertz@itp.phys.ethz.ch>
# info@rmetrics.org
# www.rmetrics.org
# for the code accessed (or partly included) from other R-ports:
# see R's copyright and license files
# for the code accessed (or partly included) from contributed R-ports
# and other sources
# see Rmetrics's copyright file
################################################################################
# FUNCTION: VARIANCE-1 STUDENT-T DISTRIBUTION:
# dstd Density for the Student-t Distribution
# pstd Probability function for the Student-t Distribution
# qstd Quantile function for the Student-t Distribution
# rstd Random Number Generator for the Student-t
# FUNCTION: SKEW VARIANCE-1 STUDENT-T DISTRIBUTION:
# dsstd Density for the skewed Student-t Distribution
# psstd Probability function for the skewed STD
# qsstd Quantile function for the skewed STD
# rsstd Random Number Generator for the skewed STD
# stdSlider Displays Variance-1 Student-t Distribution and RVS
# FUNCTION: PARAMETER ESTIMATION:
# stdFit Fit the parameters for a Sudent-t distribution
# sstdFit Fit the parameters for a skew Sudent-t distribution
################################################################################
test.sstdDist <-
function()
{
# Standardized Student-t Distribution:
RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion")
set.seed(4711, kind = "Marsaglia-Multicarry")
# Test:
test = fBasics::distCheck("std", mean = 0, sd = 1, nu = 5, robust = FALSE)
print(test)
# Skew Standardized Student-t Distribution:
RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion")
set.seed(4711, kind = "Marsaglia-Multicarry")
# Test:
test = fBasics::distCheck("sstd", mean = 0, sd = 1, nu = 5, xi = 1.5, robust = FALSE)
print(test)
# Return Value:
return()
}
# ------------------------------------------------------------------------------
test.stdFit <-
function()
{
# Fit the parameters for a Student-t distribution
# stdFit - Fit the parameters for a Sudent-t distribution
# Standardized Student-t Distribution:
RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion")
set.seed(4711, kind = "Marsaglia-Multicarry")
# Series:
x = rstd(n = 2500, mean = 0, sd = 1, nu = 5)
# Fit:
fit = stdFit(x)
print(fit)
# Fit the parameters for a skew Sudent-t distribution
# sstdFit - Fit the parameters for a Sudent-t distribution
# Skew Standardized Student-t Distribution:
RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion")
set.seed(4711, kind = "Marsaglia-Multicarry")
# Series:
x = rsstd(n = 2500, mean = 0, sd = 1, nu = 5, xi = 1.5)
# Fit:
fit = sstdFit(x)
print(fit)
# Return Value:
return()
}
# ------------------------------------------------------------------------------
test.sstdSlider <-
function()
{
# Try Distribution:
# sstdSlider(type = "dist")
NA
# Try Random Variates:
RNGkind(kind = "Marsaglia-Multicarry", normal.kind = "Inversion")
set.seed(4711, kind = "Marsaglia-Multicarry")
# sstdSlider(type = "rand")
NA
# Return Value:
return()
}
################################################################################
|