File: dist-std.Rd

package info (click to toggle)
fgarch 4052.93-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 896 kB
  • sloc: fortran: 339; ansic: 18; makefile: 14
file content (129 lines) | stat: -rw-r--r-- 3,122 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
\name{std}
\alias{std}

\alias{dstd}
\alias{pstd}
\alias{qstd}
\alias{rstd}

\concept{t-distribution}
\concept{Student-t distribution}
\concept{standardized Student t distribution}
\concept{standardized Student-t distribution}


\title{Standardized Student-t distribution}

\description{
    
  Functions to compute density, distribution function, quantile function
  and to generate random variates for the standardized Student-t
  distribution.
       
}

\usage{
dstd(x, mean = 0, sd = 1, nu = 5, log = FALSE)
pstd(q, mean = 0, sd = 1, nu = 5)
qstd(p, mean = 0, sd = 1, nu = 5)
rstd(n, mean = 0, sd = 1, nu = 5)
}

\arguments{
  \item{x, q}{
    a numeric vector of quantiles.
  }
  \item{p}{
    a numeric vector of probabilities.
  }
  \item{n}{
    number of observations to simulate.
  } 
  \item{mean}{
    location parameter.
  }
  \item{sd}{
    scale parameter.
  }
  \item{nu}{
    shape parameter (degrees of freedom).
  }
  \item{log}{
    logical; if \code{TRUE}, densities are given as log densities.
  }
}

\details{

  The standardized Student-t distribution is defined so that for a given
  \code{sd} it has the same variance, \code{sd^2}, for all degrees of
  freedom. For comparison, the variance of the usual Student-t
  distribution is \code{nu/(nu-2)}, where \code{nu} is the degrees of
  freedom.  The usual Student-t distribution is obtained by setting
  \code{sd = sqrt(nu/(nu - 2))}.

  Argument \code{nu} must be greater than 2. Although there is a default
  value for \code{nu}, it is rather arbitrary and relying on it is
  strongly discouraged.
  
  \code{dstd} computes the density,
  \code{pstd} the distribution function,
  \code{qstd} the quantile function,
  and
  \code{rstd} generates random deviates from the standardized-t
  distribution with the specified parameters.
  
}

\value{
  numeric vector
}

\references{
Fernandez C., Steel M.F.J. (2000); 
    \emph{On Bayesian Modelling of Fat Tails and Skewness},
    Preprint, 31 pages. 
    
Wuertz D., Chalabi Y. and Luksan L. (2006);
    \emph{Parameter estimation of ARMA  models with GARCH/APARCH errors: An R
      and SPlus software implementation},
    Preprint, 41 pages,
    \url{https://github.com/GeoBosh/fGarchDoc/blob/master/WurtzEtAlGarch.pdf}
}

\author{
  Diethelm Wuertz for the Rmetrics \R-port
}

\seealso{
  \code{\link{stdFit}} (fit).
  \code{\link{stdSlider}} (visualize),

  \code{\link{absMoments}}
}
\examples{
## std -

pstd(1, sd = sqrt(5/(5-2)), nu = 5) == pt(1, df = 5) # TRUE

   par(mfrow = c(2, 2))
   set.seed(1953)
   r = rstd(n = 1000)
   plot(r, type = "l", main = "sstd", col = "steelblue")
   
   # Plot empirical density and compare with true density:
   hist(r, n = 25, probability = TRUE, border = "white", col = "steelblue")
   box()
   x = seq(min(r), max(r), length = 201)
   lines(x, dstd(x), lwd = 2)
   
   # Plot df and compare with true df:
   plot(sort(r), (1:1000/1000), main = "Probability", col = "steelblue",
     ylab = "Probability")
   lines(x, pstd(x), lwd = 2)
   
   # Compute quantiles:
   round(qstd(pstd(q = seq(-1, 5, by = 1))), digits = 6)
}

\keyword{distribution}