File: garchFit.Rd

package info (click to toggle)
fgarch 4052.93-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 896 kB
  • sloc: fortran: 339; ansic: 18; makefile: 14
file content (361 lines) | stat: -rw-r--r-- 13,135 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
\name{garchFit}
\alias{garchFit}

\alias{garchKappa}
\alias{.gogarchFit}

\concept{GARCH model}
\concept{APARCH model}
\concept{ARMA-GARCH model}
\concept{ARMA-APARCH model}
\concept{AR-GARCH model}
\concept{AR-APARCH model}
\concept{MA-GARCH model}
\concept{MA-APARCH model}

\concept{fit GARCH model}
\concept{fit APARCH model}
\concept{fit ARMA-GARCH model}
\concept{fit ARMA-APARCH model}
\concept{fit AR-GARCH model}
\concept{fit AR-APARCH model}
\concept{fit MA-GARCH model}
\concept{fit MA-APARCH model}


\title{Fit univariate and multivariate GARCH-type models}

\description{
  
  Estimates the parameters of a univariate ARMA-GARCH/APARCH process, or
  --- experimentally --- of a multivariate GO-GARCH process model.  The
  latter uses an algorithm based on \code{fastICA()}, inspired from
  Bernhard Pfaff's package \CRANpkg{gogarch}.

}

\usage{
garchFit(formula = ~ garch(1, 1), data,
	init.rec = c("mci", "uev"),
	delta = 2, skew = 1, shape = 4,
	cond.dist = c("norm", "snorm", "ged", "sged",
                      "std", "sstd", "snig", "QMLE"),
	include.mean = TRUE, include.delta = NULL, include.skew = NULL,
        include.shape = NULL,
        leverage = NULL, trace = TRUE,
	%recursion = c("internal", "filter", "testing"),
	algorithm = c("nlminb", "lbfgsb", "nlminb+nm", "lbfgsb+nm"),
	hessian = c("ropt", "rcd"),
        control = list(),
        title = NULL, description = NULL, \dots)

garchKappa(cond.dist = c("norm", "ged", "std", "snorm", "sged", "sstd", "snig"),
           gamma = 0, delta = 2, skew = NA, shape = NA)

.gogarchFit(formula = ~garch(1, 1), data, init.rec = c("mci", "uev"),
            delta = 2, skew = 1, shape = 4,
            cond.dist = c("norm", "snorm", "ged", "sged",
                          "std", "sstd", "snig", "QMLE"),
            include.mean = TRUE, include.delta = NULL, include.skew = NULL,
            include.shape = NULL,
            leverage = NULL, trace = TRUE,
            algorithm = c("nlminb", "lbfgsb", "nlminb+nm", "lbfgsb+nm"),
            hessian = c("ropt", "rcd"),
            control = list(),
            title = NULL, description = NULL, \dots)
}

\arguments{
  % \item{recursion}{
  %   a string parameter that determines the recursion used for calculating
  %   the maximum log-likelihood function.
  %   Allowed values are ...
  % }
  \item{formula}{
    \code{\link{formula}} object describing the mean and variance equation of the
    ARMA-GARCH/APARCH model.  A pure GARCH(1,1) model is selected
    e.g., for \code{formula = ~garch(1,1)}.  To specify an
    ARMA(2,1)-APARCH(1,1) process, use \code{ ~ arma(2,1) + aparch(1,1)}.
  }
  \item{data}{

    an optional \code{"timeSeries"} or \code{"data.frame"} object
    containing the variables in the model.  If not found in
    \code{data}, the variables are taken from
    \code{environment(formula)}, typically the environment from which
    \code{armaFit} is called.  If \code{data} is an univariate series,
    then the series is converted into a numeric vector and the name of
    the response in the formula will be neglected.

  }
  \item{init.rec}{
    a character string indicating the method how to initialize the
    mean and varaince recursion relation.
  }
  \item{delta}{
      a numeric value, the exponent \code{delta} of the variance recursion.
      By default, this value will be fixed, otherwise the exponent will be
      estimated together with the other model parameters if
      \code{include.delta=FALSE}.
  }
  \item{skew}{
      a numeric value, the skewness parameter of the conditional
      distribution.
  }
  \item{shape}{
      a numeric value, the shape parameter of the conditional distribution.
  }
  \item{cond.dist}{
    a character string naming the desired conditional distribution.
    Valid values are \code{"dnorm"}, \code{"dged"}, \code{"dstd"},
    \code{"dsnorm"}, \code{"dsged"}, \code{"dsstd"} and
    \code{"QMLE"}. The default value is the normal distribution.  See
    Details for more information.
  }
  \item{include.mean}{
      this flag determines if the parameter for the mean will be estimated
      or not. If \code{include.mean=TRUE} this will be the case, otherwise
      the parameter will be kept fixed durcing the process
      of parameter optimization.
  }
  \item{include.delta}{a \code{\link{logical}} determining if the
    parameter for the recursion equation \code{delta} will be estimated
    or not.  If false, the shape parameter will be kept fixed during the
    process of parameter optimization.
  }
  \item{include.skew}{
      a logical flag which determines if the parameter for the skewness
      of the conditional distribution will be estimated or not. If
      \code{include.skew=FALSE} then the skewness parameter will be kept
      fixed during the process of parameter optimization.
  }

  \item{include.shape}{
      a logical flag which determines if the parameter for the shape
      of the conditional distribution will be estimated or not. If
      \code{include.shape=FALSE} then the shape parameter will be kept
      fixed during the process of parameter optimization.
  }
    \item{leverage}{
      a logical flag for APARCH models. Should the model be leveraged?
      By default \code{leverage=TRUE}.
  }
  \item{trace}{
      a logical flag. Should the optimization process of fitting the
      model parameters be printed? By default \code{trace=TRUE}.
  }
  \item{algorithm}{
    a string parameter that determines the algorithm used for maximum
    likelihood estimation.
    % Allowed values are
    %   \code{"nmfb"},
    %   \code{"sqp"},
    %   \code{"nlminb"}, and
    %   \code{"bfgs"} where the third is the default
    % setting. \code{"mnfb"} is a fully Fortran implemented and extremely
    % fast version of the R-coded \code{"nlminb"} algorithm.
  }
  \item{hessian}{
    a string denoting how the Hessian matrix should be evaluated,
    either \code{hessian ="rcd"}, or \code{"ropt"}.  The default,
    \code{"rcd"}  is a central difference approximation implemented
    in \R and \code{"ropt"} uses the internal R function \code{optimhess}.
  }
  \item{control}{
    control parameters, the same as used for the functions from
    \code{nlminb}, and 'bfgs' and 'Nelder-Mead' from \code{optim}.
  }
  \item{gamma}{
    APARCH leverage parameter entering into the formula for calculating
    the expectation value.
  }
  \item{title}{
    a character string which allows for a project title.
  }
  \item{description}{optional character string with a brief description.}
  \item{\dots}{
    additional arguments to be passed.
  }
}

\details{
    \code{"QMLE"} stands for Quasi-Maximum Likelihood Estimation, which
    assumes normal distribution and uses robust standard errors for
    inference. Bollerslev and Wooldridge (1992) proved that if the mean
    and the volatility equations are correctly specified, the QML
    estimates are consistent and asymptotically normally
    distributed. However, the estimates are not efficient and \dQuote{the
    efficiency loss can be marked under asymmetric ... distributions}
    (Bollerslev and Wooldridge (1992), p. 166). The robust
    variance-covariance matrix of the estimates equals the (Eicker-White)
    sandwich estimator, i.e.

    \deqn{V = H^{-1} G^{\prime} G H^{-1},}{V = H^(-1) G' G H^(-1),}

    where \eqn{V}{V} denotes the variance-covariance matrix, \eqn{H}{H}
    stands for the Hessian and \eqn{G}{G} represents the matrix of
    contributions to the gradient, the elements of which are defined as

    \deqn{G_{t,i} = \frac{\partial l_{t}}{\partial \zeta_{i}},}{%
    G_{t,i} = derivative of l_{t} w.r.t. zeta_{i},}

    where \eqn{t_{t}}{l_{t}} is the log likelihood of the t-th observation
    and \eqn{\zeta_{i}}{zeta_{i}} is the i-th estimated parameter. See
    sections 10.3 and 10.4 in Davidson and MacKinnon (2004) for a more
    detailed description of the robust variance-covariance matrix.

}

\value{

  for \code{garchFit}, an S4 object of class \code{"\linkS4class{fGARCH}"}.
  Slot \code{@fit} contains the results from the optimization.

  for \code{.gogarchFit()}: Similar definition for GO-GARCH modeling.
  Here, \code{data} must be \emph{multivariate}.
  Still \dQuote{preliminary}, mostly undocumented, and untested(!).  At
  least mentioned here...

}

\references{
    ATT (1984);
    \emph{PORT Library Documentation},
    http://netlib.bell-labs.com/netlib/port/.

    Bera A.K., Higgins M.L. (1993);
    \emph{ARCH Models: Properties, Estimation and Testing},
    J. Economic Surveys 7, 305--362.

    Bollerslev T. (1986);
    \emph{Generalized Autoregressive Conditional Heteroscedasticity},
    Journal of Econometrics 31, 307--327.

    Bollerslev T., Wooldridge J.M. (1992);
    \emph{Quasi-Maximum Likelihood Estimation and Inference in Dynamic
    Models with Time-Varying Covariance},
    Econometric Reviews 11, 143--172.

    Byrd R.H., Lu P., Nocedal J., Zhu C. (1995);
    \emph{A Limited Memory Algorithm for Bound Constrained Optimization},
    SIAM Journal of Scientific Computing 16, 1190--1208.

    Davidson R., MacKinnon J.G. (2004);
    \emph{Econometric Theory and Methods},
    Oxford University Press, New York.

    Engle R.F. (1982);
    \emph{Autoregressive Conditional Heteroscedasticity with Estimates
    of the Variance of United Kingdom Inflation},
    Econometrica 50, 987--1008.

    Nash J.C. (1990);
    \emph{Compact Numerical Methods for Computers},
    Linear Algebra and Function Minimisation,
    Adam Hilger.

    Nelder J.A., Mead R. (1965);
    \emph{A Simplex Algorithm for Function Minimization},
    Computer Journal 7, 308--313.

    Nocedal J., Wright S.J. (1999);
    \emph{Numerical Optimization},
    Springer, New York.

}

\author{
    Diethelm Wuertz for the Rmetrics \R-port,\cr
    R Core Team for the 'optim' \R-port,\cr
    Douglas Bates and Deepayan Sarkar for the 'nlminb' \R-port,\cr
    Bell-Labs for the underlying PORT Library,\cr
    Ladislav Luksan for the underlying Fortran SQP Routine, \cr
    Zhu, Byrd, Lu-Chen and Nocedal for the underlying L-BFGS-B Routine.

    Martin Maechler for cleaning up; \emph{mentioning}
    \code{.gogarchFit()}.
}

\seealso{
  \code{\link{garchSpec}},
  \code{\link{garchFitControl}},
  class \code{"\linkS4class{fGARCH}"}
}

\examples{
## UNIVARIATE TIME SERIES INPUT:
# In the univariate case the lhs formula has not to be specified ...

# A numeric Vector from default GARCH(1,1) - fix the seed:
N <- 200
x.vec <- as.vector(garchSim(garchSpec(rseed = 1985), n = N)[,1])
garchFit(~ garch(1,1), data = x.vec, trace = FALSE)

# An univariate timeSeries object with dummy dates:
stopifnot(require("timeSeries"))
x.timeSeries <- dummyDailySeries(matrix(x.vec), units = "GARCH11")
garchFit(~ garch(1,1), data = x.timeSeries, trace = FALSE)

\dontrun{
   # An univariate zoo object:
   require("zoo")
   x.zoo <- zoo(as.vector(x.vec), order.by = as.Date(rownames(x.timeSeries)))
   garchFit(~ garch(1,1), data = x.zoo, trace = FALSE)
}

# An univariate "ts" object:
x.ts <- as.ts(x.vec)
garchFit(~ garch(1,1), data = x.ts, trace = FALSE)


## MULTIVARIATE TIME SERIES INPUT:
##
# For multivariate data inputs the lhs formula must be specified ...

# A numeric matrix binded with dummy random normal variates:
X.mat <- cbind(GARCH11 = x.vec, R = rnorm(N))
garchFit(GARCH11 ~ garch(1,1), data = X.mat)

# A multivariate timeSeries object with dummy dates:
X.timeSeries <- dummyDailySeries(X.mat, units = c("GARCH11", "R"))
garchFit(GARCH11 ~ garch(1,1), data = X.timeSeries)

\dontrun{
   # A multivariate zoo object:
   X.zoo <- zoo(X.mat, order.by = as.Date(rownames(x.timeSeries)))
   garchFit(GARCH11 ~ garch(1,1), data = X.zoo)
}

# A multivariate "mts" object:
X.mts <- as.ts(X.mat)
garchFit(GARCH11 ~ garch(1,1), data = X.mts)


## MODELING THE PERCENTUAL SPI/SBI SPREAD FROM LPP BENCHMARK:

stopifnot(require("timeSeries"))
X.timeSeries <- as.timeSeries(data(LPP2005REC))
X.mat <- as.matrix(X.timeSeries)
\dontrun{X.zoo <- zoo(X.mat, order.by = as.Date(rownames(X.mat)))}
X.mts <- ts(X.mat)
garchFit(100*(SPI - SBI) ~ garch(1,1), data = X.timeSeries)
# The remaining are not yet supported ...
# garchFit(100*(SPI - SBI) ~ garch(1,1), data = X.mat)
# garchFit(100*(SPI - SBI) ~ garch(1,1), data = X.zoo)
# garchFit(100*(SPI - SBI) ~ garch(1,1), data = X.mts)

## MODELING HIGH/LOW RETURN SPREADS FROM MSFT PRICE SERIES:

X.timeSeries <- MSFT
garchFit(Open ~ garch(1,1), data = returns(X.timeSeries))
garchFit(100*(High-Low) ~ garch(1,1), data = returns(X.timeSeries))

## GO-GARCH Modelling  (not yet!!) % FIXME

## data(DowJones30, package="fEcofin") # no longer exists
## X <- returns(as.timeSeries(DowJones30)); head(X)
## N <- 5; ans <- .gogarchFit(data = X[, 1:N], trace = FALSE); ans
## ans@h.t
}

\keyword{models}