1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2010 Bitly
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
"""
Generate a text format histogram
This is a loose port to python of the Perl version at
http://www.pandamatak.com/people/anand/xfer/histo
https://github.com/bitly/data_hacks
This version of the script comes with Filtlong (github.com/rrwick/Filtlong)
and was slightly modified to better suit statistics of long sequencing reads.
"""
from __future__ import print_function
from __future__ import division
import sys
from decimal import Decimal
import logging
import math
from optparse import OptionParser
from collections import namedtuple
class MVSD(object):
"A class that calculates a running Mean / Variance / Standard Deviation"
def __init__(self):
self.is_started = False
self.ss = Decimal(0) # (running) sum of square deviations from mean
self.m = Decimal(0) # (running) mean
self.total_w = Decimal(0) # weight of items seen
def add(self, x, w=1):
"add another datapoint to the Mean / Variance / Standard Deviation"
if not isinstance(x, Decimal):
x = Decimal(x)
if not self.is_started:
self.m = x
self.ss = Decimal(0)
self.total_w = w
self.is_started = True
else:
temp_w = self.total_w + w
self.ss += (self.total_w * w * (x - self.m) *
(x - self.m)) // temp_w
self.m += (x - self.m) // temp_w
self.total_w = temp_w
def var(self):
return self.ss // self.total_w
def sd(self):
return math.sqrt(self.var())
def mean(self):
return self.m
DataPoint = namedtuple('DataPoint', ['value', 'count'])
def test_mvsd():
mvsd = MVSD()
for x in range(10):
mvsd.add(x)
assert '%.2f' % mvsd.mean() == "4.50"
assert '%.2f' % mvsd.var() == "8.25"
assert '%.14f' % mvsd.sd() == "2.87228132326901"
def load_stream(input_stream, agg_value_key, agg_key_value):
for line in input_stream:
clean_line = line.strip()
if not clean_line:
# skip empty lines (ie: newlines)
continue
if clean_line[0] in ['"', "'"]:
clean_line = clean_line.strip("\"'")
try:
if agg_key_value:
key, value = clean_line.rstrip().rsplit(None, 1)
yield DataPoint(Decimal(key), int(value))
elif agg_value_key:
value, key = clean_line.lstrip().split(None, 1)
yield DataPoint(Decimal(key), int(value))
else:
yield DataPoint(Decimal(clean_line), 1)
except:
logging.exception('failed %r', line)
print("invalid line %r" % line, file=sys.stderr)
def median(values, key=None):
if not key:
key = None # map and sort accept None as identity
length = len(values)
if length % 2:
median_indeces = [length/2]
else:
median_indeces = [length/2-1, length/2]
values = sorted(values, key=key)
return sum(map(key,
[values[i] for i in median_indeces])) // len(median_indeces)
def test_median():
assert 6 == median([8, 7, 9, 1, 2, 6, 3]) # odd-sized list
assert 4 == median([4, 5, 2, 1, 9, 10]) # even-sized int list. (4+5)/2 = 4
# even-sized float list. (4.0+5)/2 = 4.5
assert "4.50" == "%.2f" % median([4.0, 5, 2, 1, 9, 10])
def histogram(stream, options):
"""
Loop over the stream and add each entry to the dataset, printing out at the
end.
stream yields Decimal()
"""
if not options.min or not options.max:
# glob the iterator here so we can do min/max on it
data = list(stream)
else:
data = stream
bucket_scale = 1
if options.min:
min_v = Decimal(options.min)
else:
min_v = min(data, key=lambda x: x.value)
min_v = min_v.value
if options.max:
max_v = Decimal(options.max)
else:
max_v = max(data, key=lambda x: x.value)
max_v = max_v.value
if not max_v > min_v:
raise ValueError('max must be > min. max:%s min:%s' % (max_v, min_v))
diff = max_v - min_v
boundaries = []
bucket_counts = []
buckets = 0
if options.custbuckets:
bound = options.custbuckets.split(',')
bound_sort = sorted(map(Decimal, bound))
# if the last value is smaller than the maximum, replace it
if bound_sort[-1] < max_v:
bound_sort[-1] = max_v
# iterate through the sorted list and append to boundaries
for x in bound_sort:
if x >= min_v and x <= max_v:
boundaries.append(x)
elif x >= max_v:
boundaries.append(max_v)
break
# beware: the min_v is not included in the boundaries,
# so no need to do a -1!
bucket_counts = [0 for x in range(len(boundaries))]
buckets = len(boundaries)
elif options.logscale:
buckets = options.buckets and int(options.buckets) or 10
if buckets <= 0:
raise ValueError('# of buckets must be > 0')
def first_bucket_size(k, n):
"""Logarithmic buckets means, the size of bucket i+1 is twice
the size of bucket i.
For k+1 buckets whose sum is n, we have
(note, k+1 buckets, since 0 is counted as well):
\sum_{i=0}^{k} x*2^i = n
x * \sum_{i=0}^{k} 2^i = n
x * (2^{k+1} - 1) = n
x = n/(2^{k+1} - 1)
"""
return n/(2**(k+1)-1)
def log_steps(k, n):
"k logarithmic steps whose sum is n"
x = first_bucket_size(k-1, n)
sum = 0
for i in range(k):
sum += 2**i * x
yield sum
bucket_counts = [0 for x in range(buckets)]
for step in log_steps(buckets, diff):
boundaries.append(min_v + step)
else:
buckets = options.buckets and int(options.buckets) or 10
if buckets <= 0:
raise ValueError('# of buckets must be > 0')
step = diff // buckets
bucket_counts = [0 for x in range(buckets)]
for x in range(buckets):
boundaries.append(min_v + (step * (x + 1)))
skipped = 0
samples = 0
mvsd = MVSD()
accepted_data = []
for record in data:
samples += record.count
if options.mvsd:
mvsd.add(record.value, record.count)
accepted_data.append(record)
# find the bucket this goes in
if record.value < min_v or record.value > max_v:
skipped += record.count
continue
for bucket_postion, boundary in enumerate(boundaries):
if record.value <= boundary:
bucket_counts[bucket_postion] += record.count
break
# auto-pick the hash scale
if max(bucket_counts) > 70:
bucket_scale = int(max(bucket_counts) // 70)
# print("# NumSamples = %d; Min = %0.2f; Max = %0.2f" %
# (samples, min_v, max_v))
# if skipped:
# print("# %d value%s outside of min/max" %
# (skipped, skipped > 1 and 's' or ''))
# if options.mvsd:
# print("# Mean = %f; Variance = %f; SD = %f; Median %f" %
# (mvsd.mean(), mvsd.var(), mvsd.sd(),
# median(accepted_data, key=lambda x: x.value)))
bucket_scale_str = "{:,}".format(bucket_scale)
print("Each " + options.dot + " represents %s bases" % bucket_scale_str)
bucket_min = min_v
bucket_max = min_v
percentage = ""
# Allocate however many characters to the bucket count formed as are needed
# for the largest value.
largest_bucket_count = max(bucket_counts[i] for i in range(buckets))
bucket_count_chars = len("{:,}".format(largest_bucket_count))
bucket_count_format = "{:" + str(bucket_count_chars) + ",}"
# If the largest bucket is large, then assume we're looking at read lengths
# and format bucket ranges as integers. If it's small, assume we're looking
# at qualitys and format the ranges with decimals.
largest_bucket = max(boundaries[i] for i in range(buckets))
if largest_bucket >= 1000:
largest_bucket_chars = len("%.0f" % largest_bucket)
bucket_format = "%" + str(largest_bucket_chars) + ".0f"
else:
largest_bucket_chars = len("%.1f" % largest_bucket)
bucket_format = "%" + str(largest_bucket_chars) + ".1f"
format_string = bucket_format + ' - ' + bucket_format + ' [%s]: %s%s'
for bucket in range(buckets):
bucket_min = bucket_max
bucket_max = boundaries[bucket]
bucket_count = bucket_counts[bucket]
bucket_count_str = bucket_count_format.format(bucket_count)
star_count = 0
if bucket_count:
star_count = bucket_count // bucket_scale
if options.percentage:
percentage = " (%0.2f%%)" % (100 * Decimal(bucket_count) /
Decimal(samples))
print(format_string % (bucket_min, bucket_max, bucket_count_str,
options.dot * star_count, percentage))
if __name__ == "__main__":
parser = OptionParser()
parser.usage = "cat data | %prog [options]"
parser.add_option("-a", "--agg", dest="agg_value_key", default=False,
action="store_true", help="Two column input format, " +
"space seperated with value<space>key")
parser.add_option("-A", "--agg-key-value", dest="agg_key_value",
default=False, action="store_true", help="Two column " +
"input format, space seperated with key<space>value")
parser.add_option("-m", "--min", dest="min",
help="minimum value for graph")
parser.add_option("-x", "--max", dest="max",
help="maximum value for graph")
parser.add_option("-b", "--buckets", dest="buckets",
help="Number of buckets to use for the histogram")
parser.add_option("-l", "--logscale", dest="logscale", default=False,
action="store_true",
help="Buckets grow in logarithmic scale")
parser.add_option("-B", "--custom-buckets", dest="custbuckets",
help="Comma seperated list of bucket " +
"edges for the histogram")
parser.add_option("--no-mvsd", dest="mvsd", action="store_false",
default=True, help="Disable the calculation of Mean, " +
"Variance and SD (improves performance)")
parser.add_option("-f", "--bucket-format", dest="format", default="%10.2f",
help="format for bucket numbers")
parser.add_option("-p", "--percentage", dest="percentage", default=False,
action="store_true", help="List percentage for each bar")
parser.add_option("--dot", dest="dot", default='∎', help="Dot representation")
(options, args) = parser.parse_args()
if sys.stdin.isatty():
# if isatty() that means it's run without anything piped into it
parser.print_usage()
print("for more help use --help")
sys.exit(1)
histogram(load_stream(sys.stdin, options.agg_value_key,
options.agg_key_value), options)
|