1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
# Filtlong supplementary scripts
This directory contains a script (`read_info_histograms.sh`) to assist with visualising read statistics. It uses a slightly modified version of the `histogram.py` file from the [data_hacks repo](https://github.com/bitly/data_hacks).
Importantly, this script uses Filtlong to generate the data for its histograms. That means the quality values visualised are the same ones that Filtlong will use for filtering. If you are planning to use Filtlong with Illumina reads as an external reference, run this script with Illumina reads as well, so the quality scores are consistent.
## Example output (without an external reference)
In this example, the qualities come from the FASTQ PHRED scores.
__Command__:
```
path/to/Filtlong/scripts/read_info_histograms.sh long_reads.fastq.gz
```
__Output__:
```
READ SET SUMMARY
----------------
number of reads: 62,313
number of bases: 498,400,580
N50 read length: 16,730
READ LENGTHS
------------
Each ∎ represents 1,044,446 bases
0 - 3799 [45,923,686]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
3799 - 7597 [73,111,261]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
7597 - 11396 [63,135,675]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
11396 - 15195 [49,558,377]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
15195 - 18994 [40,910,839]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
18994 - 22792 [34,441,187]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
22792 - 26591 [28,738,160]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
26591 - 30390 [24,738,026]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
30390 - 34189 [22,096,602]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
34189 - 37987 [18,985,609]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
37987 - 41786 [15,406,318]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎
41786 - 45585 [12,755,023]: ∎∎∎∎∎∎∎∎∎∎∎∎
45585 - 49383 [12,919,019]: ∎∎∎∎∎∎∎∎∎∎∎∎
49383 - 53182 [ 9,529,903]: ∎∎∎∎∎∎∎∎∎
53182 - 56981 [ 7,744,484]: ∎∎∎∎∎∎∎
56981 - 60780 [ 6,403,620]: ∎∎∎∎∎∎
60780 - 64578 [ 5,626,494]: ∎∎∎∎∎
64578 - 68377 [ 5,434,617]: ∎∎∎∎∎
68377 - 72176 [ 3,851,906]: ∎∎∎
72176 - 75974 [ 3,104,518]: ∎∎
75974 - 79773 [ 2,723,174]: ∎∎
79773 - 83572 [ 2,445,516]: ∎∎
83572 - 87371 [ 1,622,746]: ∎
87371 - 91169 [ 1,424,798]: ∎
91169 - 94968 [ 1,018,819]:
94968 - 98767 [ 1,254,227]: ∎
98767 - 102566 [ 1,000,129]:
102566 - 106364 [ 206,593]:
106364 - 110163 [ 217,310]:
110163 - 113962 [ 561,474]:
113962 - 117760 [ 233,150]:
117760 - 121559 [ 476,864]:
121559 - 125358 [ 248,209]:
125358 - 129157 [ 0]:
129157 - 132955 [ 262,547]:
132955 - 136754 [ 0]:
136754 - 140553 [ 137,751]:
140553 - 144352 [ 0]:
144352 - 148150 [ 0]:
148150 - 151949 [ 151,949]:
MEAN QUALITIES
--------------
Each ∎ represents 984,822 bases
65.6 - 66.3 [ 4,750]:
66.3 - 67.1 [ 533]:
67.1 - 67.8 [ 43,474]:
67.8 - 68.6 [ 1,568]:
68.6 - 69.3 [ 24,007]:
69.3 - 70.1 [ 33,284]:
70.1 - 70.8 [ 80,237]:
70.8 - 71.6 [ 74,948]:
71.6 - 72.3 [ 125,425]:
72.3 - 73.1 [ 193,567]:
73.1 - 73.8 [ 179,704]:
73.8 - 74.5 [ 337,987]:
74.5 - 75.3 [ 659,382]:
75.3 - 76.0 [ 715,250]:
76.0 - 76.8 [ 890,534]:
76.8 - 77.5 [ 1,117,521]: ∎
77.5 - 78.3 [ 1,309,180]: ∎
78.3 - 79.0 [ 1,732,547]: ∎
79.0 - 79.8 [ 2,328,104]: ∎∎
79.8 - 80.5 [ 3,276,277]: ∎∎∎
80.5 - 81.3 [ 3,484,277]: ∎∎∎
81.3 - 82.0 [ 4,759,691]: ∎∎∎∎
82.0 - 82.7 [ 6,444,131]: ∎∎∎∎∎∎
82.7 - 83.5 [ 7,473,861]: ∎∎∎∎∎∎∎
83.5 - 84.2 [ 9,623,707]: ∎∎∎∎∎∎∎∎∎
84.2 - 85.0 [11,909,590]: ∎∎∎∎∎∎∎∎∎∎∎∎
85.0 - 85.7 [14,997,120]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
85.7 - 86.5 [19,717,703]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
86.5 - 87.2 [25,483,029]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
87.2 - 88.0 [29,508,578]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
88.0 - 88.7 [36,579,391]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
88.7 - 89.4 [44,757,036]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
89.4 - 90.2 [54,706,747]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
90.2 - 90.9 [64,024,337]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
90.9 - 91.7 [68,937,558]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
91.7 - 92.4 [54,405,581]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
92.4 - 93.2 [24,211,000]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
93.2 - 93.9 [ 3,607,372]: ∎∎∎
93.9 - 94.7 [ 623,042]:
94.7 - 95.4 [ 18,550]:
WINDOW QUALITIES
----------------
Each ∎ represents 512,055 bases
53.3 - 54.4 [ 43,895]:
54.4 - 55.4 [ 32,903]:
55.4 - 56.5 [ 10,451]:
56.5 - 57.5 [ 93,358]:
57.5 - 58.6 [ 125,071]:
58.6 - 59.6 [ 61,604]:
59.6 - 60.6 [ 631,021]: ∎
60.6 - 61.7 [ 770,097]: ∎
61.7 - 62.7 [ 1,088,376]: ∎∎
62.7 - 63.8 [ 1,288,929]: ∎∎
63.8 - 64.8 [ 1,557,672]: ∎∎∎
64.8 - 65.9 [ 3,623,305]: ∎∎∎∎∎∎∎
65.9 - 66.9 [ 3,870,845]: ∎∎∎∎∎∎∎
66.9 - 67.9 [ 5,679,487]: ∎∎∎∎∎∎∎∎∎∎∎
67.9 - 69.0 [ 7,660,899]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎
69.0 - 70.0 [10,257,283]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
70.0 - 71.1 [10,923,548]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
71.1 - 72.1 [12,823,586]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
72.1 - 73.2 [14,691,154]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
73.2 - 74.2 [17,058,927]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
74.2 - 75.3 [19,953,105]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
75.3 - 76.3 [21,729,076]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
76.3 - 77.3 [23,635,419]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
77.3 - 78.4 [24,208,910]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
78.4 - 79.4 [29,229,242]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
79.4 - 80.5 [30,320,254]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
80.5 - 81.5 [31,582,509]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
81.5 - 82.6 [34,303,771]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
82.6 - 83.6 [35,740,373]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
83.6 - 84.6 [35,843,870]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
84.6 - 85.7 [34,414,639]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
85.7 - 86.7 [31,090,589]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
86.7 - 87.8 [24,992,027]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
87.8 - 88.8 [16,361,297]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
88.8 - 89.9 [ 8,641,030]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
89.9 - 90.9 [ 2,927,227]: ∎∎∎∎∎
90.9 - 91.9 [ 875,281]: ∎
91.9 - 93.0 [ 204,049]:
93.0 - 94.0 [ 49,040]:
94.0 - 95.1 [ 6,461]:
```
Based on the histograms, I might choose the following conservative quality thresholds: `--min_length 5000 --min_mean_q 80 --min_window_q 65`
<br><br><br>
## Example with Illumina reads as an external reference
This example uses the same dataset as the previous one, but the qualities now come from k-mer matches to Illumina reads. The qualities are therefore different but the read length information is unchanged.
__Command__:
```
path/to/Filtlong/scripts/read_info_histograms.sh long_reads.fastq.gz illumina_1.fastq.gz illumina_2.fastq.gz
```
__Output__:
```
READ SET SUMMARY
----------------
number of reads: 62,313
number of bases: 498,400,580
N50 read length: 16,730
READ LENGTHS
------------
Each ∎ represents 1,044,446 bases
0 - 3799 [45,923,686]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
3799 - 7597 [73,111,261]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
7597 - 11396 [63,135,675]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
11396 - 15195 [49,558,377]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
15195 - 18994 [40,910,839]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
18994 - 22792 [34,441,187]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
22792 - 26591 [28,738,160]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
26591 - 30390 [24,738,026]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
30390 - 34189 [22,096,602]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
34189 - 37987 [18,985,609]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
37987 - 41786 [15,406,318]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎
41786 - 45585 [12,755,023]: ∎∎∎∎∎∎∎∎∎∎∎∎
45585 - 49383 [12,919,019]: ∎∎∎∎∎∎∎∎∎∎∎∎
49383 - 53182 [ 9,529,903]: ∎∎∎∎∎∎∎∎∎
53182 - 56981 [ 7,744,484]: ∎∎∎∎∎∎∎
56981 - 60780 [ 6,403,620]: ∎∎∎∎∎∎
60780 - 64578 [ 5,626,494]: ∎∎∎∎∎
64578 - 68377 [ 5,434,617]: ∎∎∎∎∎
68377 - 72176 [ 3,851,906]: ∎∎∎
72176 - 75974 [ 3,104,518]: ∎∎
75974 - 79773 [ 2,723,174]: ∎∎
79773 - 83572 [ 2,445,516]: ∎∎
83572 - 87371 [ 1,622,746]: ∎
87371 - 91169 [ 1,424,798]: ∎
91169 - 94968 [ 1,018,819]:
94968 - 98767 [ 1,254,227]: ∎
98767 - 102566 [ 1,000,129]:
102566 - 106364 [ 206,593]:
106364 - 110163 [ 217,310]:
110163 - 113962 [ 561,474]:
113962 - 117760 [ 233,150]:
117760 - 121559 [ 476,864]:
121559 - 125358 [ 248,209]:
125358 - 129157 [ 0]:
129157 - 132955 [ 262,547]:
132955 - 136754 [ 0]:
136754 - 140553 [ 137,751]:
140553 - 144352 [ 0]:
144352 - 148150 [ 0]:
148150 - 151949 [ 151,949]:
MEAN QUALITIES
--------------
Each ∎ represents 677,887 bases
0.0 - 2.5 [ 67,263]:
2.5 - 4.9 [ 82,815]:
4.9 - 7.4 [ 256,950]:
7.4 - 9.9 [ 749,158]: ∎
9.9 - 12.3 [ 1,152,658]: ∎
12.3 - 14.8 [ 1,754,082]: ∎∎
14.8 - 17.3 [ 3,059,964]: ∎∎∎∎
17.3 - 19.7 [ 5,408,847]: ∎∎∎∎∎∎∎
19.7 - 22.2 [ 7,510,681]: ∎∎∎∎∎∎∎∎∎∎∎
22.2 - 24.6 [ 4,006,337]: ∎∎∎∎∎
24.6 - 27.1 [ 2,801,778]: ∎∎∎∎
27.1 - 29.6 [ 2,502,685]: ∎∎∎
29.6 - 32.0 [ 3,258,647]: ∎∎∎∎
32.0 - 34.5 [ 3,435,155]: ∎∎∎∎∎
34.5 - 37.0 [ 4,278,777]: ∎∎∎∎∎∎
37.0 - 39.4 [ 4,983,333]: ∎∎∎∎∎∎∎
39.4 - 41.9 [ 6,439,521]: ∎∎∎∎∎∎∎∎∎
41.9 - 44.4 [ 7,588,641]: ∎∎∎∎∎∎∎∎∎∎∎
44.4 - 46.8 [ 8,908,943]: ∎∎∎∎∎∎∎∎∎∎∎∎∎
46.8 - 49.3 [10,001,462]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎
49.3 - 51.8 [12,713,431]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
51.8 - 54.2 [16,136,550]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
54.2 - 56.7 [18,115,381]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
56.7 - 59.1 [21,659,142]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
59.1 - 61.6 [23,166,427]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
61.6 - 64.1 [25,919,731]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
64.1 - 66.5 [31,712,427]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
66.5 - 69.0 [36,552,017]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
69.0 - 71.5 [41,159,323]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
71.5 - 73.9 [46,002,774]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
73.9 - 76.4 [47,452,136]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
76.4 - 78.9 [46,485,175]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
78.9 - 81.3 [32,871,399]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
81.3 - 83.8 [15,072,800]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
83.8 - 86.3 [ 3,755,240]: ∎∎∎∎∎
86.3 - 88.7 [ 961,203]: ∎
88.7 - 91.2 [ 370,319]:
91.2 - 93.7 [ 36,939]:
93.7 - 96.1 [ 8,536]:
96.1 - 98.6 [ 1,933]:
WINDOW QUALITIES
----------------
Each ∎ represents 1,223,100 bases
0.0 - 2.5 [85,617,025]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
2.5 - 4.9 [ 4,646,208]: ∎∎∎
4.9 - 7.4 [42,058,882]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
7.4 - 9.9 [20,326,766]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
9.9 - 12.3 [12,648,808]: ∎∎∎∎∎∎∎∎∎∎
12.3 - 14.8 [33,893,701]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
14.8 - 17.3 [24,865,373]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
17.3 - 19.8 [20,757,969]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
19.8 - 22.2 [24,508,676]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
22.2 - 24.7 [24,211,150]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
24.7 - 27.2 [22,883,942]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
27.2 - 29.6 [25,860,478]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
29.6 - 32.1 [21,054,189]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
32.1 - 34.6 [20,389,975]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
34.6 - 37.0 [17,721,925]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎
37.0 - 39.5 [16,808,916]: ∎∎∎∎∎∎∎∎∎∎∎∎∎
39.5 - 42.0 [14,247,451]: ∎∎∎∎∎∎∎∎∎∎∎
42.0 - 44.5 [16,429,129]: ∎∎∎∎∎∎∎∎∎∎∎∎∎
44.5 - 46.9 [11,544,406]: ∎∎∎∎∎∎∎∎∎
46.9 - 49.4 [ 9,910,130]: ∎∎∎∎∎∎∎∎
49.4 - 51.9 [ 7,622,653]: ∎∎∎∎∎∎
51.9 - 54.3 [ 5,814,027]: ∎∎∎∎
54.3 - 56.8 [ 4,865,746]: ∎∎∎
56.8 - 59.3 [ 3,159,894]: ∎∎
59.3 - 61.8 [ 2,174,103]: ∎
61.8 - 64.2 [ 1,399,105]: ∎
64.2 - 66.7 [ 1,003,958]:
66.7 - 69.2 [ 637,184]:
69.2 - 71.6 [ 508,873]:
71.6 - 74.1 [ 255,636]:
74.1 - 76.6 [ 183,048]:
76.6 - 79.0 [ 145,158]:
79.0 - 81.5 [ 92,925]:
81.5 - 84.0 [ 61,294]:
84.0 - 86.5 [ 46,942]:
86.5 - 88.9 [ 20,743]:
88.9 - 91.4 [ 14,950]:
91.4 - 93.9 [ 5,187]:
93.9 - 96.3 [ 3,171]:
96.3 - 98.8 [ 884]:
```
There is an interesting bimodel distribution in the mean quality histogram. I hypothesise that the larger (higher quality) component is from real reads, while the smaller (lower quality) component is junk. To filter conservatively, I would perhaps just use `--min_mean_q 30`. To filter more aggressively, I would also use `--min_window_q 5`.
|