File: README.md

package info (click to toggle)
filtlong 0.2.1-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,672 kB
  • sloc: cpp: 3,458; python: 996; sh: 119; makefile: 38
file content (321 lines) | stat: -rw-r--r-- 19,629 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# Filtlong supplementary scripts

This directory contains a script (`read_info_histograms.sh`) to assist with visualising read statistics. It uses a slightly modified version of the `histogram.py` file from the [data_hacks repo](https://github.com/bitly/data_hacks).

Importantly, this script uses Filtlong to generate the data for its histograms. That means the quality values visualised are the same ones that Filtlong will use for filtering. If you are planning to use Filtlong with Illumina reads as an external reference, run this script with Illumina reads as well, so the quality scores are consistent.



## Example output (without an external reference)

In this example, the qualities come from the FASTQ PHRED scores.

__Command__:
```
path/to/Filtlong/scripts/read_info_histograms.sh long_reads.fastq.gz
```

__Output__:
```
READ SET SUMMARY
----------------
number of reads: 62,313
number of bases: 498,400,580
N50 read length: 16,730


READ LENGTHS
------------
Each ∎ represents 1,044,446 bases
     0 -   3799 [45,923,686]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
  3799 -   7597 [73,111,261]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
  7597 -  11396 [63,135,675]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
 11396 -  15195 [49,558,377]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
 15195 -  18994 [40,910,839]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
 18994 -  22792 [34,441,187]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
 22792 -  26591 [28,738,160]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
 26591 -  30390 [24,738,026]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
 30390 -  34189 [22,096,602]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
 34189 -  37987 [18,985,609]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
 37987 -  41786 [15,406,318]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎
 41786 -  45585 [12,755,023]: ∎∎∎∎∎∎∎∎∎∎∎∎
 45585 -  49383 [12,919,019]: ∎∎∎∎∎∎∎∎∎∎∎∎
 49383 -  53182 [ 9,529,903]: ∎∎∎∎∎∎∎∎∎
 53182 -  56981 [ 7,744,484]: ∎∎∎∎∎∎∎
 56981 -  60780 [ 6,403,620]: ∎∎∎∎∎∎
 60780 -  64578 [ 5,626,494]: ∎∎∎∎∎
 64578 -  68377 [ 5,434,617]: ∎∎∎∎∎
 68377 -  72176 [ 3,851,906]: ∎∎∎
 72176 -  75974 [ 3,104,518]: ∎∎
 75974 -  79773 [ 2,723,174]: ∎∎
 79773 -  83572 [ 2,445,516]: ∎∎
 83572 -  87371 [ 1,622,746]: ∎
 87371 -  91169 [ 1,424,798]: ∎
 91169 -  94968 [ 1,018,819]: 
 94968 -  98767 [ 1,254,227]: ∎
 98767 - 102566 [ 1,000,129]: 
102566 - 106364 [   206,593]: 
106364 - 110163 [   217,310]: 
110163 - 113962 [   561,474]: 
113962 - 117760 [   233,150]: 
117760 - 121559 [   476,864]: 
121559 - 125358 [   248,209]: 
125358 - 129157 [         0]: 
129157 - 132955 [   262,547]: 
132955 - 136754 [         0]: 
136754 - 140553 [   137,751]: 
140553 - 144352 [         0]: 
144352 - 148150 [         0]: 
148150 - 151949 [   151,949]: 


MEAN QUALITIES
--------------
Each ∎ represents 984,822 bases
65.6 - 66.3 [     4,750]: 
66.3 - 67.1 [       533]: 
67.1 - 67.8 [    43,474]: 
67.8 - 68.6 [     1,568]: 
68.6 - 69.3 [    24,007]: 
69.3 - 70.1 [    33,284]: 
70.1 - 70.8 [    80,237]: 
70.8 - 71.6 [    74,948]: 
71.6 - 72.3 [   125,425]: 
72.3 - 73.1 [   193,567]: 
73.1 - 73.8 [   179,704]: 
73.8 - 74.5 [   337,987]: 
74.5 - 75.3 [   659,382]: 
75.3 - 76.0 [   715,250]: 
76.0 - 76.8 [   890,534]: 
76.8 - 77.5 [ 1,117,521]: ∎
77.5 - 78.3 [ 1,309,180]: ∎
78.3 - 79.0 [ 1,732,547]: ∎
79.0 - 79.8 [ 2,328,104]: ∎∎
79.8 - 80.5 [ 3,276,277]: ∎∎∎
80.5 - 81.3 [ 3,484,277]: ∎∎∎
81.3 - 82.0 [ 4,759,691]: ∎∎∎∎
82.0 - 82.7 [ 6,444,131]: ∎∎∎∎∎∎
82.7 - 83.5 [ 7,473,861]: ∎∎∎∎∎∎∎
83.5 - 84.2 [ 9,623,707]: ∎∎∎∎∎∎∎∎∎
84.2 - 85.0 [11,909,590]: ∎∎∎∎∎∎∎∎∎∎∎∎
85.0 - 85.7 [14,997,120]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
85.7 - 86.5 [19,717,703]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
86.5 - 87.2 [25,483,029]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
87.2 - 88.0 [29,508,578]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
88.0 - 88.7 [36,579,391]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
88.7 - 89.4 [44,757,036]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
89.4 - 90.2 [54,706,747]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
90.2 - 90.9 [64,024,337]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
90.9 - 91.7 [68,937,558]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
91.7 - 92.4 [54,405,581]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
92.4 - 93.2 [24,211,000]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
93.2 - 93.9 [ 3,607,372]: ∎∎∎
93.9 - 94.7 [   623,042]: 
94.7 - 95.4 [    18,550]: 


WINDOW QUALITIES
----------------
Each ∎ represents 512,055 bases
53.3 - 54.4 [    43,895]: 
54.4 - 55.4 [    32,903]: 
55.4 - 56.5 [    10,451]: 
56.5 - 57.5 [    93,358]: 
57.5 - 58.6 [   125,071]: 
58.6 - 59.6 [    61,604]: 
59.6 - 60.6 [   631,021]: ∎
60.6 - 61.7 [   770,097]: ∎
61.7 - 62.7 [ 1,088,376]: ∎∎
62.7 - 63.8 [ 1,288,929]: ∎∎
63.8 - 64.8 [ 1,557,672]: ∎∎∎
64.8 - 65.9 [ 3,623,305]: ∎∎∎∎∎∎∎
65.9 - 66.9 [ 3,870,845]: ∎∎∎∎∎∎∎
66.9 - 67.9 [ 5,679,487]: ∎∎∎∎∎∎∎∎∎∎∎
67.9 - 69.0 [ 7,660,899]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎
69.0 - 70.0 [10,257,283]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
70.0 - 71.1 [10,923,548]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
71.1 - 72.1 [12,823,586]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
72.1 - 73.2 [14,691,154]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
73.2 - 74.2 [17,058,927]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
74.2 - 75.3 [19,953,105]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
75.3 - 76.3 [21,729,076]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
76.3 - 77.3 [23,635,419]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
77.3 - 78.4 [24,208,910]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
78.4 - 79.4 [29,229,242]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
79.4 - 80.5 [30,320,254]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
80.5 - 81.5 [31,582,509]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
81.5 - 82.6 [34,303,771]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
82.6 - 83.6 [35,740,373]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
83.6 - 84.6 [35,843,870]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
84.6 - 85.7 [34,414,639]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
85.7 - 86.7 [31,090,589]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
86.7 - 87.8 [24,992,027]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
87.8 - 88.8 [16,361,297]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
88.8 - 89.9 [ 8,641,030]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
89.9 - 90.9 [ 2,927,227]: ∎∎∎∎∎
90.9 - 91.9 [   875,281]: ∎
91.9 - 93.0 [   204,049]: 
93.0 - 94.0 [    49,040]: 
94.0 - 95.1 [     6,461]: 
```

Based on the histograms, I might choose the following conservative quality thresholds: `--min_length 5000 --min_mean_q 80 --min_window_q 65`


<br><br><br>


## Example with Illumina reads as an external reference

This example uses the same dataset as the previous one, but the qualities now come from k-mer matches to Illumina reads. The qualities are therefore different but the read length information is unchanged.

__Command__:
```
path/to/Filtlong/scripts/read_info_histograms.sh long_reads.fastq.gz illumina_1.fastq.gz illumina_2.fastq.gz
```

__Output__:
```
READ SET SUMMARY
----------------
number of reads: 62,313
number of bases: 498,400,580
N50 read length: 16,730


READ LENGTHS
------------
Each ∎ represents 1,044,446 bases
     0 -   3799 [45,923,686]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
  3799 -   7597 [73,111,261]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
  7597 -  11396 [63,135,675]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
 11396 -  15195 [49,558,377]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
 15195 -  18994 [40,910,839]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
 18994 -  22792 [34,441,187]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
 22792 -  26591 [28,738,160]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
 26591 -  30390 [24,738,026]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
 30390 -  34189 [22,096,602]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
 34189 -  37987 [18,985,609]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
 37987 -  41786 [15,406,318]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎
 41786 -  45585 [12,755,023]: ∎∎∎∎∎∎∎∎∎∎∎∎
 45585 -  49383 [12,919,019]: ∎∎∎∎∎∎∎∎∎∎∎∎
 49383 -  53182 [ 9,529,903]: ∎∎∎∎∎∎∎∎∎
 53182 -  56981 [ 7,744,484]: ∎∎∎∎∎∎∎
 56981 -  60780 [ 6,403,620]: ∎∎∎∎∎∎
 60780 -  64578 [ 5,626,494]: ∎∎∎∎∎
 64578 -  68377 [ 5,434,617]: ∎∎∎∎∎
 68377 -  72176 [ 3,851,906]: ∎∎∎
 72176 -  75974 [ 3,104,518]: ∎∎
 75974 -  79773 [ 2,723,174]: ∎∎
 79773 -  83572 [ 2,445,516]: ∎∎
 83572 -  87371 [ 1,622,746]: ∎
 87371 -  91169 [ 1,424,798]: ∎
 91169 -  94968 [ 1,018,819]: 
 94968 -  98767 [ 1,254,227]: ∎
 98767 - 102566 [ 1,000,129]: 
102566 - 106364 [   206,593]: 
106364 - 110163 [   217,310]: 
110163 - 113962 [   561,474]: 
113962 - 117760 [   233,150]: 
117760 - 121559 [   476,864]: 
121559 - 125358 [   248,209]: 
125358 - 129157 [         0]: 
129157 - 132955 [   262,547]: 
132955 - 136754 [         0]: 
136754 - 140553 [   137,751]: 
140553 - 144352 [         0]: 
144352 - 148150 [         0]: 
148150 - 151949 [   151,949]: 


MEAN QUALITIES
--------------
Each ∎ represents 677,887 bases
 0.0 -  2.5 [    67,263]: 
 2.5 -  4.9 [    82,815]: 
 4.9 -  7.4 [   256,950]: 
 7.4 -  9.9 [   749,158]: ∎
 9.9 - 12.3 [ 1,152,658]: ∎
12.3 - 14.8 [ 1,754,082]: ∎∎
14.8 - 17.3 [ 3,059,964]: ∎∎∎∎
17.3 - 19.7 [ 5,408,847]: ∎∎∎∎∎∎∎
19.7 - 22.2 [ 7,510,681]: ∎∎∎∎∎∎∎∎∎∎∎
22.2 - 24.6 [ 4,006,337]: ∎∎∎∎∎
24.6 - 27.1 [ 2,801,778]: ∎∎∎∎
27.1 - 29.6 [ 2,502,685]: ∎∎∎
29.6 - 32.0 [ 3,258,647]: ∎∎∎∎
32.0 - 34.5 [ 3,435,155]: ∎∎∎∎∎
34.5 - 37.0 [ 4,278,777]: ∎∎∎∎∎∎
37.0 - 39.4 [ 4,983,333]: ∎∎∎∎∎∎∎
39.4 - 41.9 [ 6,439,521]: ∎∎∎∎∎∎∎∎∎
41.9 - 44.4 [ 7,588,641]: ∎∎∎∎∎∎∎∎∎∎∎
44.4 - 46.8 [ 8,908,943]: ∎∎∎∎∎∎∎∎∎∎∎∎∎
46.8 - 49.3 [10,001,462]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎
49.3 - 51.8 [12,713,431]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
51.8 - 54.2 [16,136,550]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
54.2 - 56.7 [18,115,381]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
56.7 - 59.1 [21,659,142]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
59.1 - 61.6 [23,166,427]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
61.6 - 64.1 [25,919,731]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
64.1 - 66.5 [31,712,427]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
66.5 - 69.0 [36,552,017]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
69.0 - 71.5 [41,159,323]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
71.5 - 73.9 [46,002,774]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
73.9 - 76.4 [47,452,136]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
76.4 - 78.9 [46,485,175]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
78.9 - 81.3 [32,871,399]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
81.3 - 83.8 [15,072,800]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
83.8 - 86.3 [ 3,755,240]: ∎∎∎∎∎
86.3 - 88.7 [   961,203]: ∎
88.7 - 91.2 [   370,319]: 
91.2 - 93.7 [    36,939]: 
93.7 - 96.1 [     8,536]: 
96.1 - 98.6 [     1,933]: 


WINDOW QUALITIES
----------------
Each ∎ represents 1,223,100 bases
 0.0 -  2.5 [85,617,025]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
 2.5 -  4.9 [ 4,646,208]: ∎∎∎
 4.9 -  7.4 [42,058,882]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
 7.4 -  9.9 [20,326,766]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
 9.9 - 12.3 [12,648,808]: ∎∎∎∎∎∎∎∎∎∎
12.3 - 14.8 [33,893,701]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
14.8 - 17.3 [24,865,373]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
17.3 - 19.8 [20,757,969]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
19.8 - 22.2 [24,508,676]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
22.2 - 24.7 [24,211,150]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
24.7 - 27.2 [22,883,942]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
27.2 - 29.6 [25,860,478]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
29.6 - 32.1 [21,054,189]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
32.1 - 34.6 [20,389,975]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
34.6 - 37.0 [17,721,925]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎
37.0 - 39.5 [16,808,916]: ∎∎∎∎∎∎∎∎∎∎∎∎∎
39.5 - 42.0 [14,247,451]: ∎∎∎∎∎∎∎∎∎∎∎
42.0 - 44.5 [16,429,129]: ∎∎∎∎∎∎∎∎∎∎∎∎∎
44.5 - 46.9 [11,544,406]: ∎∎∎∎∎∎∎∎∎
46.9 - 49.4 [ 9,910,130]: ∎∎∎∎∎∎∎∎
49.4 - 51.9 [ 7,622,653]: ∎∎∎∎∎∎
51.9 - 54.3 [ 5,814,027]: ∎∎∎∎
54.3 - 56.8 [ 4,865,746]: ∎∎∎
56.8 - 59.3 [ 3,159,894]: ∎∎
59.3 - 61.8 [ 2,174,103]: ∎
61.8 - 64.2 [ 1,399,105]: ∎
64.2 - 66.7 [ 1,003,958]: 
66.7 - 69.2 [   637,184]: 
69.2 - 71.6 [   508,873]: 
71.6 - 74.1 [   255,636]: 
74.1 - 76.6 [   183,048]: 
76.6 - 79.0 [   145,158]: 
79.0 - 81.5 [    92,925]: 
81.5 - 84.0 [    61,294]: 
84.0 - 86.5 [    46,942]: 
86.5 - 88.9 [    20,743]: 
88.9 - 91.4 [    14,950]: 
91.4 - 93.9 [     5,187]: 
93.9 - 96.3 [     3,171]: 
96.3 - 98.8 [       884]:
```

There is an interesting bimodel distribution in the mean quality histogram. I hypothesise that the larger (higher quality) component is from real reads, while the smaller (lower quality) component is junk. To filter conservatively, I would perhaps just use `--min_mean_q 30`. To filter more aggressively, I would also use `--min_window_q 5`.